| Citation: | DENG Huiping, CAO Zhaoyang, XIANG Sen, WU Jin. Saliency Detection Based on Context-aware Cross-layer Feature Fusion for Light Field Images[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4489-4498. doi: 10.11999/JEIT221270 | 
 
	                | [1] | BORJI A, CHENG Mingming, JIANG Huaizhu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706–5722. doi:  10.1109/TIP.2015.2487833 | 
| [2] | LI Xi, HU Weiming, SHEN Chunhua, et al. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 58. doi:  10.1145/2508037.2508039 | 
| [3] | HAN S and VASCONCELOS N. Object recognition with hierarchical discriminant saliency networks[J]. Frontiers in Computational Neuroscience, 2014, 8: 109. doi:  10.3389/FNCOM.2014.00109 | 
| [4] | LI Nianyi, YE Jinwei, JI Yu, et al. Saliency detection on light field[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2806–2813. | 
| [5] | ZHANG Jun, WANG Meng, LIN Liang, et al. Saliency detection on light field: A multi-cue approach[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2017, 13(3): 32. doi:  10.1145/3107956 | 
| [6] | PIAO Yongri, RONG Zhengkun, ZHANG Miao, et al. Deep light-field-driven saliency detection from a single view[C]. The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 904–911. | 
| [7] | WANG Tiantian, PIAO Yongri, LU Huchuan, et al. Deep learning for light field saliency detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 8837–8847. | 
| [8] | PIAO Yongri, JIANG Yongyao, ZHANG Miao, et al. PANet: Patch-aware network for light field salient object detection[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 379–391. doi:  10.1109/TCYB.2021.3095512 | 
| [9] | DAI Yimian, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]. 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 3559–3568. | 
| [10] | 王安志, 任春洪, 何淋艳, 等. 基于多模态多级特征聚合网络的光场显著性目标检测[J]. 计算机工程, 2022, 48(7): 227–233,240. doi:  10.19678/j.issn.1000-3428.0061811 WANG Anzhi, REN Chunhong, HE Linyan, et al. Light field salient object detection based on multi-modal multi-level feature aggregation network[J]. Computer Engineering, 2022, 48(7): 227–233,240. doi:  10.19678/j.issn.1000-3428.0061811 | 
| [11] | 冯洁, 王世刚, 韦健, 等. 结合相机阵列选择性光场重聚焦的显著性检测[J]. 中国光学, 2021, 14(3): 587–595. doi:  10.37188/CO.2020-0165 FENG Jie, WANG Shigang, WEI Jian, et al. Saliency detection combined with selective light field refocusing of camera array[J]. Chinese Optics, 2021, 14(3): 587–595. doi:  10.37188/CO.2020-0165 | 
| [12] | PIAO Yongri, RONG Zhengkun, ZHANG Miao, et al. Exploit and replace: An asymmetrical two-stream architecture for versatile light field saliency detection[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11865–11873. | 
| [13] | ZHANG Miao, JI Wei, PIAO Yongri, et al. LFNet: Light field fusion network for salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 6276–6287. doi:  10.1109/TIP.2020.2990341 | 
| [14] | ZHANG Miao, LI Jingjing, WEI Ji, et al. Memory-oriented decoder for light field salient object detection[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 81. | 
| [15] | WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11531–11539. | 
| [16] | ZHAO Jiaxing, LIU Jingjing, FAN Dengping, et al. EGNet: Edge guidance network for salient object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 8778–8787. | 
| [17] | HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5300–5309. | 
| [18] | LIU Nian, ZHANG Ni, and HAN Junwei. Learning selective self-mutual attention for RGB-D saliency detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13753–13762. | 
| [19] | ZHANG Miao, FEI Sunxiao, LIU Jie, et al. Asymmetric two-stream architecture for accurate RGB-D saliency detection[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 374–390. | 
| [20] | ZHANG Qiudan, WANG Shiqi, WANG Xu, et al. A multi-task collaborative network for light field salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 1849–1861. doi:  10.1109/TCSVT.2020.3013119 | 
| [21] | 李爽, 邓慧萍, 朱磊, 等. 联合聚焦度和传播机制的光场图像显著性检测[J]. 中国图象图形学报, 2020, 25(12): 2578–2586. doi:  10.11834/jig.190675 LI Shuang, DENG Huiping, ZHU Lei, et al. Saliency detection on a light field via the focusness and propagation mechanism[J]. Journal of Image and Graphics, 2020, 25(12): 2578–2586. doi:  10.11834/jig.190675 | 
| [22] | ZHANG Jun, WANG Meng, GAO Jun, et al. Saliency detection with a deeper investigation of light field[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 2212–2218. | 
| [23] | WANG Xue, DONG Yingying, ZHANG Qi, et al. Region-based depth feature descriptor for saliency detection on light field[J]. Multimedia Tools and Applications, 2021, 80(11): 16329–16346. doi:  10.1007/s11042-020-08890-x | 
