Advanced Search
Volume 45 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
DENG Huiping, CAO Zhaoyang, XIANG Sen, WU Jin. Saliency Detection Based on Context-aware Cross-layer Feature Fusion for Light Field Images[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4489-4498. doi: 10.11999/JEIT221270
Citation: DENG Huiping, CAO Zhaoyang, XIANG Sen, WU Jin. Saliency Detection Based on Context-aware Cross-layer Feature Fusion for Light Field Images[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4489-4498. doi: 10.11999/JEIT221270

Saliency Detection Based on Context-aware Cross-layer Feature Fusion for Light Field Images

doi: 10.11999/JEIT221270
  • Received Date: 2022-10-08
  • Rev Recd Date: 2023-02-17
  • Available Online: 2023-03-14
  • Publish Date: 2023-12-26
  • Saliency detection of light field images is a key technique in applications such as visual tracking, target detection, and image compression. However, the existing deep learning methods ignore feature differences and global contextual information when processing features, resulting in blurred saliency maps and even incomplete detection objects and difficult background suppression in scenes with similar foreground and background colors, textures, or background clutter. A context-aware cross-layer feature fusion-based saliency detection network for light field images is proposed. First, a cross-layer feature fusion module is built to select adaptively complementary components from input features to reduce feature differences and avoid inaccurate integration of features in order to more effectively fuse adjacent layer features and informative coefficients; Meanwhile, a Parallel Cascaded Feedback Decoder (PCFD) is constructed using the cross-layer feature fusion module to iteratively refine features using a multi-level feedback mechanism to avoid feature loss and dilution of high-level contextual features; Finally, a Global Context Module (GCM) generates multi-scale features to exploit the rich global context information in order to obtain the correlation between different salient regions and mitigate the dilution of high-level features. Experimental results on the latest light field dataset show that the textual method outperforms the compared methods both quantitatively and qualitatively, and is able to detect accurately complete salient objects and obtain clear saliency maps from similar front/background scenes.
  • loading
  • [1]
    BORJI A, CHENG Mingming, JIANG Huaizhu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706–5722. doi: 10.1109/TIP.2015.2487833
    [2]
    LI Xi, HU Weiming, SHEN Chunhua, et al. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 58. doi: 10.1145/2508037.2508039
    [3]
    HAN S and VASCONCELOS N. Object recognition with hierarchical discriminant saliency networks[J]. Frontiers in Computational Neuroscience, 2014, 8: 109. doi: 10.3389/FNCOM.2014.00109
    [4]
    LI Nianyi, YE Jinwei, JI Yu, et al. Saliency detection on light field[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2806–2813.
    [5]
    ZHANG Jun, WANG Meng, LIN Liang, et al. Saliency detection on light field: A multi-cue approach[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2017, 13(3): 32. doi: 10.1145/3107956
    [6]
    PIAO Yongri, RONG Zhengkun, ZHANG Miao, et al. Deep light-field-driven saliency detection from a single view[C]. The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 904–911.
    [7]
    WANG Tiantian, PIAO Yongri, LU Huchuan, et al. Deep learning for light field saliency detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 8837–8847.
    [8]
    PIAO Yongri, JIANG Yongyao, ZHANG Miao, et al. PANet: Patch-aware network for light field salient object detection[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 379–391. doi: 10.1109/TCYB.2021.3095512
    [9]
    DAI Yimian, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]. 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 3559–3568.
    [10]
    王安志, 任春洪, 何淋艳, 等. 基于多模态多级特征聚合网络的光场显著性目标检测[J]. 计算机工程, 2022, 48(7): 227–233,240. doi: 10.19678/j.issn.1000-3428.0061811

    WANG Anzhi, REN Chunhong, HE Linyan, et al. Light field salient object detection based on multi-modal multi-level feature aggregation network[J]. Computer Engineering, 2022, 48(7): 227–233,240. doi: 10.19678/j.issn.1000-3428.0061811
    [11]
    冯洁, 王世刚, 韦健, 等. 结合相机阵列选择性光场重聚焦的显著性检测[J]. 中国光学, 2021, 14(3): 587–595. doi: 10.37188/CO.2020-0165

    FENG Jie, WANG Shigang, WEI Jian, et al. Saliency detection combined with selective light field refocusing of camera array[J]. Chinese Optics, 2021, 14(3): 587–595. doi: 10.37188/CO.2020-0165
    [12]
    PIAO Yongri, RONG Zhengkun, ZHANG Miao, et al. Exploit and replace: An asymmetrical two-stream architecture for versatile light field saliency detection[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11865–11873.
    [13]
    ZHANG Miao, JI Wei, PIAO Yongri, et al. LFNet: Light field fusion network for salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 6276–6287. doi: 10.1109/TIP.2020.2990341
    [14]
    ZHANG Miao, LI Jingjing, WEI Ji, et al. Memory-oriented decoder for light field salient object detection[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 81.
    [15]
    WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11531–11539.
    [16]
    ZHAO Jiaxing, LIU Jingjing, FAN Dengping, et al. EGNet: Edge guidance network for salient object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 8778–8787.
    [17]
    HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5300–5309.
    [18]
    LIU Nian, ZHANG Ni, and HAN Junwei. Learning selective self-mutual attention for RGB-D saliency detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13753–13762.
    [19]
    ZHANG Miao, FEI Sunxiao, LIU Jie, et al. Asymmetric two-stream architecture for accurate RGB-D saliency detection[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 374–390.
    [20]
    ZHANG Qiudan, WANG Shiqi, WANG Xu, et al. A multi-task collaborative network for light field salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 1849–1861. doi: 10.1109/TCSVT.2020.3013119
    [21]
    李爽, 邓慧萍, 朱磊, 等. 联合聚焦度和传播机制的光场图像显著性检测[J]. 中国图象图形学报, 2020, 25(12): 2578–2586. doi: 10.11834/jig.190675

    LI Shuang, DENG Huiping, ZHU Lei, et al. Saliency detection on a light field via the focusness and propagation mechanism[J]. Journal of Image and Graphics, 2020, 25(12): 2578–2586. doi: 10.11834/jig.190675
    [22]
    ZHANG Jun, WANG Meng, GAO Jun, et al. Saliency detection with a deeper investigation of light field[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 2212–2218.
    [23]
    WANG Xue, DONG Yingying, ZHANG Qi, et al. Region-based depth feature descriptor for saliency detection on light field[J]. Multimedia Tools and Applications, 2021, 80(11): 16329–16346. doi: 10.1007/s11042-020-08890-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (575) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return