Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
PAN Xiaoyi, XIE Qianpeng, MENG Xiaoming, CHEN Jiyuan, AI Xia, LIU Jiaqi. High Resolution Multidimensional Parameters Estimation for Bistatic EMVS-MIMO Radar: From the Difference Coarray Perspective[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3860-3867. doi: 10.11999/JEIT221259
Citation: PAN Xiaoyi, XIE Qianpeng, MENG Xiaoming, CHEN Jiyuan, AI Xia, LIU Jiaqi. High Resolution Multidimensional Parameters Estimation for Bistatic EMVS-MIMO Radar: From the Difference Coarray Perspective[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3860-3867. doi: 10.11999/JEIT221259

High Resolution Multidimensional Parameters Estimation for Bistatic EMVS-MIMO Radar: From the Difference Coarray Perspective

doi: 10.11999/JEIT221259
Funds:  The National Natural Science Foundation of China (61890545, 61890542, 61890540), Changsha Science and Technology Project Funding Program(Kq2209002)
  • Received Date: 2022-09-29
  • Rev Recd Date: 2023-02-01
  • Available Online: 2023-02-04
  • Publish Date: 2023-11-28
  • This paper employs the difference coarray structures of transmit/receive EMVS to enhance the multidimensional parameter estimation performance in bistatic EMVS-MIMO radar. The difference coarrays of transmit/receive EMVS are built through the high-order tensor operation for receiving data. First, a fifth-order tensor model with the difference coarray of the original transmits/receive EMVS can be obtained by applying the tensor permutation rule and generalized tensorization. Additionally, the repeated elements in the difference coarray can be removed by using two selection matrices, where the obtained degree of freedom of the difference coarray is twice that of the original array. Then, a third-order tensor model with the third way fixed at 36 can be developed by using the generalized tensorization again. Finally, the PARAFAC algorithm is adopted to effectively estimate the transmit/receive four-dimensional parameter. Simulation demonstrate that the difference coarray can efficiently enhance the multi-dimensional parameter estimation performance in bistatic EMVS-MIMO radar.
  • loading
  • [1]
    CHINTAGUNTA S and PONNUSAMY P. 2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors[J]. Signal Processing, 2018, 147: 163–172. doi: 10.1016/j.sigpro.2018.01.025
    [2]
    LIU Tingting, WEN Fangqing, SHI Junpeng, et al. A computationally economic location algorithm for bistatic EVMS-MIMO radar[J]. IEEE Access, 2019, 7: 120533–120540. doi: 10.1109/ACCESS.2019.2937577
    [3]
    WEN Fangqing and SHI Junpeng. Fast direction finding for bistatic EMVS-MIMO radar without pairing[J]. Signal Processing, 2020, 173: 107512. doi: 10.1016/j.sigpro.2020.107512
    [4]
    WEN Fangqing, SHI Junpeng, and ZHANG Zijing. Joint 2D-DOD, 2D-DOA, and polarization angles estimation for bistatic EMVS-MIMO radar via PARAFAC analysis[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1626–1638. doi: 10.1109/TVT.2019.2957511
    [5]
    MAO Chenxing, SHI Junpeng, and WEN Fangqing. Target localization in bistatic EMVS-MIMO radar using tensor subspace method[J]. IEEE Access, 2019, 7: 163119–163127. doi: 10.1109/ACCESS.2019.2951892
    [6]
    CHINTAGUNTA S and PALANISAMY P. DOD and DOA estimation using the spatial smoothing in MIMO radar with the EmV sensors[J]. Multidimensional Systems and Signal Processing, 2018, 29(4): 1241–1253. doi: 10.1007/s11045-017-0500-1
    [7]
    CHINTAGUNTA S and PONNUSAMY P. Integrated polarisation and diversity smoothing algorithm for DOD and DOA estimation of coherent targets[J]. IET Signal Processing, 2018, 12(4): 447–453. doi: 10.1049/iet-spr.2017.0276
    [8]
    PONNUSAMY P, SUBRAMANIAM K, and CHINTAGUNTA S. Computationally efficient method for joint DOD and DOA estimation of coherent targets in MIMO radar[J]. Signal Processing, 2019, 165: 262–267. doi: 10.1016/j.sigpro.2019.07.015
    [9]
    WEN Fangqing, SHI Junpeng, and ZHANG Zijing. Generalized spatial smoothing in bistatic EMVS-MIMO radar[J]. Signal Processing, 2022, 193: 108406. doi: 10.1016/j.sigpro.2021.108406
    [10]
    谢前朋, 潘小义, 陈吉源, 等. 基于稀疏阵列的电磁矢量传感器多输入多输出雷达高分辨角度和极化参数联合估计[J]. 物理学报, 2020, 69(7): 074302. doi: 10.7498/aps.69.20191895

    XIE Qianpeng, PAN Xiaoyi, CHEN Jiyuan, et al. Efficient angle and polarization parameter estimaiton for electromagnetic vector sensors multiple-input multiple-output radar by using sparse array[J]. Acta Physica Sinica, 2020, 69(7): 074302. doi: 10.7498/aps.69.20191895
    [11]
    谢前朋, 潘小义, 陈吉源, 等. 基于新型阵列的双基地电磁矢量传感器MIMO雷达高分辨角度参数估计[J]. 电子与信息学报, 2021, 43(2): 270–276. doi: 10.11999/JEIT200130

    XIE Qianpeng, PAN Xiaoyi, CHEN Jiyuan, et al. High resolution angle parameter estimation for bistatic EMVS-MIMO radar based on a new designed array[J]. Journal of Electronics &Information Technology, 2021, 43(2): 270–276. doi: 10.11999/JEIT200130
    [12]
    WANG Xianpeng, HUANG Mengxing, and WAN Liangtian. Joint 2D-DOD and 2D-DOA estimation for coprime EMVS-MIMO radar[J]. Circuits, Systems, and Signal Processing, 2021, 40(6): 2950–2966. doi: 10.1007/s00034-020-01605-5
    [13]
    VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    [14]
    LIU Chunlin, VAIDYANATHAN P P, and PAL P. Coprime coarray interpolation for DOA estimation via nuclear norm minimization[C]. Proceedings of 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2639–2642.
    [15]
    SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Sparsity-based two-dimensional DOA estimation for coprime array: From sum–difference coarray viewpoint[J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5591–5604. doi: 10.1109/TSP.2017.2739105
    [16]
    SHI Junpeng, WEN Fangqing, and LIU Tianpeng. Nested MIMO radar: Coarrays, tensor modeling, and angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 573–585. doi: 10.1109/TAES.2020.3034012
    [17]
    ZHENG Hang, SHI Zhiguo, ZHOU Chengwei, et al. Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array[J]. IEEE Signal Processing Letters, 2021, 28: 1545–1549. doi: 10.1109/LSP.2021.3099074
    [18]
    ZHENG Hang, ZHOU Chengwei, WANG Yong, et al. Sample fourth-order cumulant tensor denoising for DOA estimation with coprime L-shaped array[C]. Proceedings of 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2021.
    [19]
    KOLDA T G and BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455–500. doi: 10.1137/07070111X
    [20]
    CICHOCKI A, MANDIC D, DE LATHAUWER L, et al. Tensor decompositions for signal processing applications: From two-way to multiway component analysis[J]. IEEE Signal Processing Magazine, 2015, 32(2): 145–163. doi: 10.1109/MSP.2013.2297439
    [21]
    SIDIROPOULOS N D, DE LATHAUWER L, FU Xiao, et al. Tensor decomposition for signal processing and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(13): 3551–3582. doi: 10.1109/TSP.2017.2690524
    [22]
    RAO Wei, LI Dan, and ZHANG Jianqiu. A tensor-based approach to L-shaped arrays processing with enhanced degrees of freedom[J]. IEEE Signal Processing Letters, 2018, 25(2): 1–5. doi: 10.1109/LSP.2017.2783370
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (616) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return