Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
WANG Xiaoliang, SHI Yuxiang, HE Weikun. Dynamic RCS Statistical Model of Wind Turbine Blades Driven by Knowledge and Data[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3887-3895. doi: 10.11999/JEIT221242
Citation: WANG Xiaoliang, SHI Yuxiang, HE Weikun. Dynamic RCS Statistical Model of Wind Turbine Blades Driven by Knowledge and Data[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3887-3895. doi: 10.11999/JEIT221242

Dynamic RCS Statistical Model of Wind Turbine Blades Driven by Knowledge and Data

doi: 10.11999/JEIT221242
Funds:  The National Natural Science Foundation of China (62141108), The Fundamental Research Funds for the Central Universities (3122022085)
  • Received Date: 2022-09-26
  • Rev Recd Date: 2023-07-05
  • Available Online: 2023-07-11
  • Publish Date: 2023-11-28
  • To address the problem of dynamic Radar Cross Section (RCS) estimation of a wind turbine when assessing the wind farm impact on radars and other equipment, a dynamic RCS statistical model of wind turbines driven by knowledge and data is proposed. First, the blades’ RCS variation function in a monotonic variation interval is established using the periodic variation characteristics of the wind turbine blades’ RCS with the blade rotation. The variation function comprises a peak RCS related to the blade geometry, a modulation function independent of the blade geometry and a multiplicative factor related to material and shape details. The peak RCS is calculated from the theoretical model. Furthermore, the modulation function and the multiplicative factor are estimated using the practically measured training data because of the complex characteristics of the RCS variation. Second, for the estimation of a wind turbine statistical model, the blades’ RCS variation function is obtained according to the geometric parameters. Then the statistical model of the probability density function is calculated using the parameter estimation method. The experimental results of the practically measured data of various types of wind turbines verify the dynamic RCS statistical model of the wind turbine blades proposed in this paper, and the model is in good agreement with the practically measured data results.
  • loading
  • [1]
    Global Wind Energy Council. Global wind report 2022[R/OL]. https://gwec.net/global-wind-report-2022/#Download, 2022.
    [2]
    BRIGADA D J and RYVKINA J. Radar-optimized wind turbine siting[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 403–413. doi: 10.1109/TSTE.2021.3113868
    [3]
    LAINER M, VENTURA J F I, SCHAUWECKER Z, et al. Insights into wind turbine reflectivity and radar cross-section (RCS) and their variability using X-band weather radar observations[J]. Atmospheric Measurement Techniques, 2021, 14(5): 3541–3560. doi: 10.5194/amt-14-3541-2021
    [4]
    YIN Jiapeng, CHEN Haonan, LI Yongzhen, et al. Clutter mitigation based on spectral depolarization ratio for dual-polarization weather radars[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6131–6145. doi: 10.1109/JSTARS.2021.3088324
    [5]
    ANGULO I, GRANDE O, JENN D, et al. Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services[J]. Atmospheric Measurement Techniques, 2015, 8(5): 2183–2193. doi: 10.5194/amt-8-2183-2015
    [6]
    BEAUCHAMP R M and CHANDRASEKAR V. Suppressing wind turbine signatures in weather radar observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2546–2562. doi: 10.1109/TGRS.2016.2647604
    [7]
    ELLA O A and ALNAJJAR K A. Mitigation measures for windfarm effects on radar systems[J]. International Journal of Aerospace Engineering, 2022, 2022: 1083717. doi: 10.1155/2022/1083717
    [8]
    KENT B M, HIL K C, BUTERBAUGH A, et al. Dynamic radar cross section and radar doppler measurements of commercial general Electric windmill power turbines part 1: Predicted and measured radar signatures[J]. IEEE Antennas and Propagation Magazine, 2008, 50(2): 211–219. doi: 10.1109/MAP.2008.4562424
    [9]
    BREDEMEYER J, SCHUBERT K, WERNER J, et al. Comparison of principles for measuring the reflectivity values from wind turbines[C]. 2019 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–10.
    [10]
    LITOV N, FALKNER B, ZHOU Hengyi, et al. Radar cross section analysis of two wind turbines via a novel millimeter-wave technique and scale model measurements[J]. IEEE Access, 2022, 10: 17897–17907. doi: 10.1109/ACCESS.2022.3148064
    [11]
    KONG Fanxing. Wind turbine clutter in weather radar: Characterization and mitigation[D]. [Ph. D dissertation], University of Oklahoma, 2014: 56–64.
    [12]
    何炜琨, 孙鹏涛, 刘昂. 风轮机叶片电磁散射特性的占比分析与解析模型的建立[J]. 信号处理, 2020, 36(3): 337–344. doi: 10.16798/j.issn.1003-0530.2020.03.003

    HE Weikun, SUN Pengtao, and LIU Ang. The proportion analysis of the electromagnetic scattering characteristics and the construction of analytical model for wind turbine blades[J]. Journal of Signal Processing, 2020, 36(3): 337–344. doi: 10.16798/j.issn.1003-0530.2020.03.003
    [13]
    CHIU S. Wind turbine radar clutter statistics and probability of detection[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 15–20.
    [14]
    FIORANELLI F, RITCHIE M, BALLERI A, et al. Experimental analysis of multistatic wind turbine radar clutter statistics[J]. Electronics Letters, 2016, 52(3): 226–228. doi: 10.1049/el.2015.3907
    [15]
    DANOON L R and BROWN A K. Modeling methodology for computing the radar cross section and doppler signature of wind farms[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 5166–5174. doi: 10.1109/TAP.2013.2272454
    [16]
    吴仁彪, 毛建, 王晓亮, 等. 航管一次雷达抗风电场干扰目标检测方法[J]. 电子与信息学报, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923

    WU Renbiao, MAO Jian, WANG Xiaoliang, et al. Target detection of primary surveillance radar in wind farm clutter[J]. Journal of Electronics &Information Technology, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923
    [17]
    EMHEMMED A S, SHEBANI N, ZEREK A, et al. Analysis of RCS and evaluation of PO approximation’s accuracy for simple targets[C]. 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 2019: 666–669.
    [18]
    ANGULO I, MONTALBAN J, CANIZO J, et al. A measurement-based multipath channel model for signal propagation in presence of wind farms in the UHF band[J]. IEEE Transactions on Communications, 2013, 61(11): 4788–4798. doi: 10.1109/TCOMM.2013.101113.130144
    [19]
    KNOTT E F, 王永庆, 张澎, 戴春亮, 译. 雷达散射截面测量[M]. 北京: 科学出版社, 2016: 364–365.

    KNOTT E F, WANG Yongqing, ZHANG Peng, DAI Chunliang. translation. Radar Cross Section Measurement[M]. Beijing: Science Press, 2016: 364–365.
    [20]
    周树道, 贺宏兵. 现代气象雷达[M]. 北京: 国防工业出版社, 2017: 44.

    ZHOU Shudao and HE Hongbing. Modern Weather Radar[M]. Beijing: National Defense Industry Press, 2017: 44.
    [21]
    赵洪山, 董叶叶, 宋鹏, 等. 基于模型的风电机组偏航系统故障检测方法[J]. 太阳能学报, 2020, 41(5): 142–149. doi: 10.19912/j.0254-0096.2020.05.021

    ZHAO Hongshan, DONG Yeye, SONG Peng, et al. Model-based fault detection method for yaw system of wind turbine[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 142–149. doi: 10.19912/j.0254-0096.2020.05.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (347) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return