Citation: | WANG Xiaoliang, SHI Yuxiang, HE Weikun. Dynamic RCS Statistical Model of Wind Turbine Blades Driven by Knowledge and Data[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3887-3895. doi: 10.11999/JEIT221242 |
[1] |
Global Wind Energy Council. Global wind report 2022[R/OL]. https://gwec.net/global-wind-report-2022/#Download, 2022.
|
[2] |
BRIGADA D J and RYVKINA J. Radar-optimized wind turbine siting[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 403–413. doi: 10.1109/TSTE.2021.3113868
|
[3] |
LAINER M, VENTURA J F I, SCHAUWECKER Z, et al. Insights into wind turbine reflectivity and radar cross-section (RCS) and their variability using X-band weather radar observations[J]. Atmospheric Measurement Techniques, 2021, 14(5): 3541–3560. doi: 10.5194/amt-14-3541-2021
|
[4] |
YIN Jiapeng, CHEN Haonan, LI Yongzhen, et al. Clutter mitigation based on spectral depolarization ratio for dual-polarization weather radars[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6131–6145. doi: 10.1109/JSTARS.2021.3088324
|
[5] |
ANGULO I, GRANDE O, JENN D, et al. Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services[J]. Atmospheric Measurement Techniques, 2015, 8(5): 2183–2193. doi: 10.5194/amt-8-2183-2015
|
[6] |
BEAUCHAMP R M and CHANDRASEKAR V. Suppressing wind turbine signatures in weather radar observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2546–2562. doi: 10.1109/TGRS.2016.2647604
|
[7] |
ELLA O A and ALNAJJAR K A. Mitigation measures for windfarm effects on radar systems[J]. International Journal of Aerospace Engineering, 2022, 2022: 1083717. doi: 10.1155/2022/1083717
|
[8] |
KENT B M, HIL K C, BUTERBAUGH A, et al. Dynamic radar cross section and radar doppler measurements of commercial general Electric windmill power turbines part 1: Predicted and measured radar signatures[J]. IEEE Antennas and Propagation Magazine, 2008, 50(2): 211–219. doi: 10.1109/MAP.2008.4562424
|
[9] |
BREDEMEYER J, SCHUBERT K, WERNER J, et al. Comparison of principles for measuring the reflectivity values from wind turbines[C]. 2019 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–10.
|
[10] |
LITOV N, FALKNER B, ZHOU Hengyi, et al. Radar cross section analysis of two wind turbines via a novel millimeter-wave technique and scale model measurements[J]. IEEE Access, 2022, 10: 17897–17907. doi: 10.1109/ACCESS.2022.3148064
|
[11] |
KONG Fanxing. Wind turbine clutter in weather radar: Characterization and mitigation[D]. [Ph. D dissertation], University of Oklahoma, 2014: 56–64.
|
[12] |
何炜琨, 孙鹏涛, 刘昂. 风轮机叶片电磁散射特性的占比分析与解析模型的建立[J]. 信号处理, 2020, 36(3): 337–344. doi: 10.16798/j.issn.1003-0530.2020.03.003
HE Weikun, SUN Pengtao, and LIU Ang. The proportion analysis of the electromagnetic scattering characteristics and the construction of analytical model for wind turbine blades[J]. Journal of Signal Processing, 2020, 36(3): 337–344. doi: 10.16798/j.issn.1003-0530.2020.03.003
|
[13] |
CHIU S. Wind turbine radar clutter statistics and probability of detection[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 15–20.
|
[14] |
FIORANELLI F, RITCHIE M, BALLERI A, et al. Experimental analysis of multistatic wind turbine radar clutter statistics[J]. Electronics Letters, 2016, 52(3): 226–228. doi: 10.1049/el.2015.3907
|
[15] |
DANOON L R and BROWN A K. Modeling methodology for computing the radar cross section and doppler signature of wind farms[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 5166–5174. doi: 10.1109/TAP.2013.2272454
|
[16] |
吴仁彪, 毛建, 王晓亮, 等. 航管一次雷达抗风电场干扰目标检测方法[J]. 电子与信息学报, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923
WU Renbiao, MAO Jian, WANG Xiaoliang, et al. Target detection of primary surveillance radar in wind farm clutter[J]. Journal of Electronics &Information Technology, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923
|
[17] |
EMHEMMED A S, SHEBANI N, ZEREK A, et al. Analysis of RCS and evaluation of PO approximation’s accuracy for simple targets[C]. 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 2019: 666–669.
|
[18] |
ANGULO I, MONTALBAN J, CANIZO J, et al. A measurement-based multipath channel model for signal propagation in presence of wind farms in the UHF band[J]. IEEE Transactions on Communications, 2013, 61(11): 4788–4798. doi: 10.1109/TCOMM.2013.101113.130144
|
[19] |
KNOTT E F, 王永庆, 张澎, 戴春亮, 译. 雷达散射截面测量[M]. 北京: 科学出版社, 2016: 364–365.
KNOTT E F, WANG Yongqing, ZHANG Peng, DAI Chunliang. translation. Radar Cross Section Measurement[M]. Beijing: Science Press, 2016: 364–365.
|
[20] |
周树道, 贺宏兵. 现代气象雷达[M]. 北京: 国防工业出版社, 2017: 44.
ZHOU Shudao and HE Hongbing. Modern Weather Radar[M]. Beijing: National Defense Industry Press, 2017: 44.
|
[21] |
赵洪山, 董叶叶, 宋鹏, 等. 基于模型的风电机组偏航系统故障检测方法[J]. 太阳能学报, 2020, 41(5): 142–149. doi: 10.19912/j.0254-0096.2020.05.021
ZHAO Hongshan, DONG Yeye, SONG Peng, et al. Model-based fault detection method for yaw system of wind turbine[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 142–149. doi: 10.19912/j.0254-0096.2020.05.021
|