Citation: | ZHENG Liming, LIU Peiguo, WANG Hongyi, WU Jianfei. Passive Internet of Things: Background, Concept, Challenges and Progress[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2293-2310. doi: 10.11999/JEIT221219 |
[1] |
中国移动, 中国电信, 中国联通, 等. 5G-Advanced网络技术演进白皮书2.0(2022)——面向万物智联新时代[R]. 2022.
China Mobile, China Telecom, China Unicom, et al. 5G -advanced technology evolution from a network perspecyive 2.0(2022)[R]. 2022.
|
[2] |
GU Xiaoqiang, HEMOUR S, and WU Ke. Far-field wireless power harvesting: Nonlinear modeling, rectenna design, and emerging applications[J]. Proceedings of the IEEE, 2022, 110(1): 56–73. doi: 10.1109/JPROC.2021.3127930
|
[3] |
LU Xiao, WANG Ping, NIYATO D, et al. Wireless networks with RF energy harvesting: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 757–789. doi: 10.1109/COMST.2014.2368999
|
[4] |
RAMALINGAM L, MARIAPPAN S, PARAMESWARAN P, et al. The advancement of radio frequency energy harvesters (RFEHs) as a revolutionary approach for solving energy crisis in wireless communication devices: A review[J]. IEEE Access, 2021, 9: 106107–106139. doi: 10.1109/ACCESS.2021.3098895
|
[5] |
VAN HUYNH N, HOANG D T, LU Xiao, et al. Ambient backscatter communications: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889–2922. doi: 10.1109/COMST.2018.2841964
|
[6] |
MURATKAR T S, BHURANE A, and KOTHARI A. Battery-less internet of things-A survey[J]. Computer Networks, 2020, 180: 107385. doi: 10.1016/j.comnet.2020.107385
|
[7] |
WU Weiqi, WANG Xingfu, HAWBANI A, et al. A survey on ambient backscatter communications: Principles, systems, applications, and challenges[J]. Computer Networks, 2022, 216: 109235. doi: 10.1016/J.COMNET.2022.109235
|
[8] |
CHOI K W, HWANG S I, AZIZ A A, et al. Simultaneous Wireless Information and Power Transfer (SWIPT) for internet of things: Novel receiver design and experimental validation[J]. IEEE Internet of Things Journal, 2020, 7(4): 2996–3012. doi: 10.1109/JIOT.2020.2964302
|
[9] |
PERERA T D P, JAYAKODY D N K, SHARMA S K, et al. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264–302. doi: 10.1109/COMST.2017.2783901
|
[10] |
CLERCKX B, HUANG Kaibin, VARSHNEY L R, et al. Wireless power transfer for future networks: Signal processing, machine learning, computing, and sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(5): 1060–1094. doi: 10.1109/JSTSP.2021.3098478
|
[11] |
KIM J, CLERCKX B, and MITCHESON P D. Signal and system design for wireless power transfer: Prototype, experiment and validation[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7453–7469. doi: 10.1109/TWC.2020.3011606
|
[12] |
CLERCKX B, ZHANG Rui, SCHOBER R, et al. Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 4–33. doi: 10.1109/JSAC.2018.2872615
|
[13] |
GU Xiaoqiang, GRAUWIN L, DOUSSET D, et al. Dynamic ambient RF energy density measurements of montreal for battery-free IoT sensor network planning[J]. IEEE Internet of Things Journal, 2021, 8(17): 13209–13221. doi: 10.1109/JIOT.2021.3065683
|
[14] |
ANDRENKO A S, LIN Xianyang, and ZENG Miaowang. Outdoor RF spectral survey: A roadmap for ambient RF energy harvesting[C]. 2015 IEEE Region 10 Conference, Macao, China, 2015: 1–4.
|
[15] |
ALSABA Y, RAHIM S K A, and LEOW C Y. Beamforming in wireless energy harvesting communications systems: A survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(2): 1329–1360. doi: 10.1109/COMST.2018.2797886
|
[16] |
ZHANG Rui and HO C K. MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 1989–2001. doi: 10.1109/TWC.2013.031813.120224
|
[17] |
TIMOTHEOU S, KRIKIDIS I, ZHENG Gan, et al. Beamforming for MISO interference channels with QoS and RF energy transfer[J]. IEEE Transactions on Wireless Communications, 2014, 13(5): 2646–2658. doi: 10.1109/TWC.2014.032514.131199
|
[18] |
CANTOS L and KIM Y H. Max-min fair energy beamforming for wireless powered communication with non-linear energy harvesting[J]. IEEE Access, 2019, 7: 69516–69523. doi: 10.1109/ACCESS.2019.2918649
|
[19] |
LI Ang and MASOUROS C. Energy-efficient SWIPT: From fully digital to hybrid analog–digital beamforming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3390–3405. doi: 10.1109/TVT.2017.2782775
|
[20] |
WAGIH M, WEDDELL A S, and BEEBY S. Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design [Antenna Applications Corner][J]. IEEE Antennas and Propagation Magazine, 2020, 62(5): 95–107. doi: 10.1109/MAP.2020.3012872
|
[21] |
SHI Yanyan, FAN Yue, LI Yan, et al. An efficient broadband slotted rectenna for wireless power transfer at LTE band[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 814–822. doi: 10.1109/TAP.2018.2882632
|
[22] |
PALAZZI V, DEL PRETE M, and FANTUZZI M. Scavenging for energy: A rectenna design for wireless energy harvesting in UHF mobile telephony bands[J]. IEEE Microwave Magazine, 2017, 18(1): 91–99. doi: 10.1109/MMM.2016.2616189
|
[23] |
HAROUNI Z, CIRIO L, OSMAN L, et al. A dual circularly polarized 2.45-GHz rectenna for wireless power transmission[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 306–309. doi: 10.1109/lawp.2011.2141973
|
[24] |
DENG Wenhui, WANG Shuihong, YANG Boru, et al. A multibeam ambient electromagnetic energy harvester with full azimuthal coverage[J]. IEEE Internet of Things Journal, 2022, 9(11): 8925–8934. doi: 10.1109/JIOT.2021.3119417
|
[25] |
VANDELLE E, BUI D H N, VUONG T P, et al. Harvesting ambient RF energy efficiently with optimal angular coverage[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(3): 1862–1873. doi: 10.1109/TAP.2018.2888957
|
[26] |
SUN Hucheng and WEN Geyi. A new rectenna with all-polarization-receiving capability for wireless power transmission[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 814–817. doi: 10.1109/LAWP.2015.2476345
|
[27] |
SONG Chaoyun, HUANG Yi, CARTER P, et al. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 3160–3171. doi: 10.1109/TAP.2016.2565697
|
[28] |
QUEVEDO-TERUEL O, LIAO Qingbi, CHEN Qiao, et al. Geodesic lens antennas for 5G and beyond[J]. IEEE Communications Magazine, 2022, 60(1): 40–45. doi: 10.1109/MCOM.001.2100545
|
[29] |
WU Qingqing and ZHANG Rui. Weighted sum power maximization for intelligent reflecting surface aided SWIPT[J]. IEEE Wireless Communications Letters, 2020, 9(5): 586–590. doi: 10.1109/LWC.2019.2961656
|
[30] |
PAN Cunhua, REN Hong, WANG Kezhi, et al. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1719–1734. doi: 10.1109/JSAC.2020.3000802
|
[31] |
GALAPPATHTHIGE D L and BADUGE G A. Exploiting distributed IRSs for enabling SWIPT[J]. IEEE Wireless Communications Letters, 2022, 11(4): 673–677. doi: 10.1109/LWC.2021.3134630
|
[32] |
JIA Xiaolun, ZHOU Xiangyun, NIYATO D, et al. Intelligent reflecting surface-assisted bistatic backscatter networks: Joint beamforming and reflection design[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(2): 799–814. doi: 10.1109/TGCN.2021.3127190
|
[33] |
XU Xinyue, LIANG Yingchang, YANG Gang, et al. Reconfigurable intelligent surface empowered symbiotic radio over broadcasting signals[C]. Proceedings of 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6.
|
[34] |
SHEN Chao, LI Weichiang, and CHANG T H. Wireless information and energy transfer in multi-antenna interference channel[J]. IEEE Transactions on Signal Processing, 2014, 62(23): 6249–6264. doi: 10.1109/TSP.2014.2355781
|
[35] |
SHEN Shanpu and CLERCKX B. Beamforming optimization for MIMO wireless power transfer with nonlinear energy harvesting: RF combining versus DC combining[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 199–213. doi: 10.1109/TWC.2020.3024064
|
[36] |
TROTTER M S, GRIFFIN J D, and DURGIN G D. Power-optimized waveforms for improving the range and reliability of RFID systems[C]. Proceedings of 2009 IEEE International Conference on RFID, Orlando, USA, 2009: 80–87.
|
[37] |
BOAVENTURA A S and CARVALHO N B. Maximizing DC power in energy harvesting circuits using multisine excitation[C]. Proceedings of 2011 IEEE MTT-S International Microwave Symposium, Baltimore, USA, 2011: 1–4.
|
[38] |
CLERCKX B and BAYGUZINA E. Waveform design for wireless power transfer[J]. IEEE Transactions on Signal Processing, 2016, 64(23): 6313–6328. doi: 10.1109/TSP.2016.2601284
|
[39] |
HUANG Yang and CLERCKX B. Waveform design for wireless power transfer with limited feedback[J]. IEEE Transactions on Wireless Communications, 2018, 17(1): 415–429. doi: 10.1109/TWC.2017.2767578
|
[40] |
ABEYWICKRAMA S, ZHANG Rui, and YUEN C. Refined nonlinear rectenna modeling and optimal waveform design for multi-user multi-antenna wireless power transfer[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(5): 1198–1210. doi: 10.1109/JSTSP.2021.3086988
|
[41] |
GAUTAM S, KUMAR S, CHATZINOTAS S, et al. Experimental evaluation of RF waveform designs for wireless power transfer using software defined radio[J]. IEEE Access, 2021, 9: 132609–132622. doi: 10.1109/ACCESS.2021.3115048
|
[42] |
VASILEV I, PLICANIC V, and LAU B K. Impact of antenna design on MIMO performance for compact terminals with adaptive impedance matching[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1454–1465. doi: 10.1109/TAP.2016.2521885
|
[43] |
MOHAN A and MONDAL S. An impedance matching strategy for micro-scale RF energy harvesting systems[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(4): 1458–1462. doi: 10.1109/TCSII.2020.3036850
|
[44] |
SONG Chaoyun, HUANG Yi, ZHOU Jiafeng, et al. Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3950–3961. doi: 10.1109/TIE.2016.2645505
|
[45] |
SONG Chaoyun, HUANG Yi, CARTER P, et al. Novel compact and broadband frequency-selectable rectennas for a wide input-power and load impedance range[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3306–3316. doi: 10.1109/TAP.2018.2826568
|
[46] |
LI Songting, LI Cong, CAI Lei, et al. A −20 dBm passive UHF RFID Tag IC with MTP NVM in 0.13-μm standard CMOS process[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(12): 4566–4579. doi: 10.1109/TCSI.2020.3007952
|
[47] |
OUDA M H, KHALIL W, and SALAMA K N. Self-biased differential rectifier with enhanced dynamic range for wireless powering[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2017, 64(5): 515–519. doi: 10.1109/TCSII.2016.2591263
|
[48] |
ALMANSOURI A S, OUDA M H, and SALAMA K N. A CMOS RF-to-DC power converter with 86% efficiency and-19.2-dBm sensitivity[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(5): 2409–2415. doi: 10.1109/TMTT.2017.2785251
|
[49] |
ALMANSOURI A S, KOSEL J, and SALAMA K N. A dual-mode nested rectifier for ambient wireless powering in CMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(5): 1754–1762. doi: 10.1109/TMTT.2020.2970913
|
[50] |
KHAN S R and CHOI G S. High-efficiency CMOS rectifier with minimized leakage and threshold cancellation features for low power bio-implants[J]. Microelectronics Journal, 2017, 66: 67–75. doi: 10.1016/j.mejo.2017.06.002
|
[51] |
NOGHABAEI S M, RADIN R L, SAVARIA Y, et al. A high-sensitivity wide input-power-range ultra-low-power RF energy harvester for IoT applications[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(1): 440–451. doi: 10.1109/TCSI.2021.3099011
|
[52] |
KIM D, INGRAM M A, and SMITH W W. Measurements of small-scale fading and path loss for long range RF tags[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1740–1749. doi: 10.1109/TAP.2003.814752
|
[53] |
YANG Gang, LIANG Yingchang, ZHANG Rui, et al. Modulation in the air: Backscatter communication over ambient OFDM carrier[J]. IEEE Transactions on Communications, 2018, 66(3): 1219–1233. doi: 10.1109/TCOMM.2017.2772261
|
[54] |
YAO Chaochao, LIU Yang, WEI Xusheng, et al. Backscatter technologies and the future of internet of things: Challenges and opportunities[J]. Intelligent and Converged Networks, 2020, 1(2): 170–180. doi: 10.23919/ICN.2020.0013
|
[55] |
KIMIONIS J, BLETSAS A, and SAHALOS J N. Increased range bistatic scatter radio[J]. IEEE Transactions on Communications, 2014, 62(3): 1091–1104. doi: 10.1109/TCOMM.2014.020314.130559
|
[56] |
QIAN Jing, GAO Feifei, and WANG Gongpu. Signal detection of ambient backscatter system with differential modulation[C]. Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3831–3835.
|
[57] |
FASARAKIS-HILLIARD N, ALEVIZOS P N, and BLETSAS A. Coherent detection and channel coding for bistatic scatter radio sensor networking[J]. IEEE Transactions on Communications, 2015, 63(5): 1798–1810. doi: 10.1109/TCOMM.2015.2412546
|
[58] |
WANG P H P, ZHANG Chi, YANG Hongsen, et al. A low-power backscatter modulation system communicating across tens of meters with standards-compliant Wi-Fi transceivers[J]. IEEE Journal of Solid-State Circuits, 2020, 55(11): 2959–2969. doi: 10.1109/JSSC.2020.3023956
|
[59] |
WANG Xiyu, YIĞITLER H, DUAN Ruifeng, et al. Coherent multiantenna receiver for BPSK-modulated ambient backscatter tags[J]. IEEE Internet of Things Journal, 2022, 9(2): 1197–1211. doi: 10.1109/JIOT.2021.3079333
|
[60] |
NAGARAJ S and YAQO R. A frequency modulation technique for SNR improvement in backscatter radios[J]. IEEE Communications Letters, 2021, 25(12): 3956–3959. doi: 10.1109/LCOMM.2021.3117735
|
[61] |
VARSHNEY A, PÉREZ-PENICHET C, ROHNER C, et al. LoRea: A backscatter architecture that achieves a long communication range[C]. Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, Delft, Netherlands, 2017: 50.
|
[62] |
IYER V, TALLA V, KELLOGG B, et al. Inter-technology backscatter: Towards internet connectivity for implanted devices[J]. GetMobile:Mobile Computing and Communications, 2017, 21(3): 35–38. doi: 10.1145/3161587.3161597
|
[63] |
TALLA V, HESSAR M, KELLOGG B, et al. LoRa backscatter: Enabling the vision of ubiquitous connectivity[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 1–24. doi: 10.1145/3130970
|
[64] |
JIANG Jinyan, XU Zhenqiang, DANG Fan, et al. Long-range ambient LoRa backscatter with parallel decoding[C]. Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, New Orleans, USA, 2021: 684–696.
|
[65] |
PARKS A N, LIU Angli, GOLLAKOTA S, et al. Turbocharging ambient backscatter communication[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(4): 619–630. doi: 10.1145/2740070.2626312
|
[66] |
GRIFFIN J D and DURGIN G D. Gains for RF tags using multiple antennas[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(2): 563–570. doi: 10.1109/TAP.2007.915423
|
[67] |
GUO Huayan, ZHANG Qianqian, XIAO Sa, et al. Exploiting multiple antennas for cognitive ambient backscatter communication[J]. IEEE Internet of Things Journal, 2019, 6(1): 765–775. doi: 10.1109/JIOT.2018.2856633
|
[68] |
HE Chen, WANG Z J, MIAO Chunyan, et al. Block-level unitary query: Enabling orthogonal-like space-time code with query diversity for MIMO Backscatter RFID[J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 1937–1949. doi: 10.1109/TWC.2015.2497240
|
[69] |
HE Chen, WANG Z J, and LEUNG V C M. Unitary query for the M×L×N MIMO backscatter RFID channel[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2613–2625. doi: 10.1109/TWC.2015.2390220
|
[70] |
ALHASSOUN M and DURGIN G D. Spatial fading in retrodirective channels: An experimental study[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5812–5820. doi: 10.1109/TWC.2021.3070384
|
[71] |
REZAEI F, TELLAMBURA C, and HERATH S. Large-scale wireless-powered networks with backscatter communications—a comprehensive survey[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1100–1130. doi: 10.1109/OJCOMS.2020.3012466
|
[72] |
ALEVIZOS P N, FASARAKIS-HILLIARD N, TOUNTAS K, et al. Channel coding for increased range bistatic backscatter radio: Experimental results[C]. 2014 IEEE RFID Technology and Applications Conference, Tampere, Finland, 2014: 38–43.
|
[73] |
HE Chen, LUAN Huixu, LI Xiaoya, et al. A simple, high-performance space–time code for MIMO backscatter communications[J]. IEEE Internet of Things Journal, 2020, 7(4): 3586–3591. doi: 10.1109/JIOT.2020.2973048
|
[74] |
DASKALAKIS S N, ASSIMONIS S D, KAMPIANAKIS E, et al. Soil moisture scatter radio networking with low power[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(7): 2338–2346. doi: 10.1109/TMTT.2016.2572677
|
[75] |
ZHU Yihua, LI Ertao, and CHI Kaikai. Encoding scheme to reduce energy consumption of delivering data in Radio frequency powered battery-free wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3085–3097. doi: 10.1109/TVT.2017.2776170
|
[76] |
SONG Guochao, YANG Hang, WANG Wei, et al. Reliable wide-area backscatter via channel polarization[C]. 2020 IEEE Conference on Computer Communications, Toronto, Canada, 2020: 1300–1308.
|
[77] |
BOYER C and ROY S. Space time coding for backscatter RFID[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2272–2280. doi: 10.1109/TWC.2013.031313.120917
|
[78] |
HE Chen, CHEN Shangdong, LUAN Huixu, et al. Monostatic MIMO backscatter communications[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1896–1909. doi: 10.1109/JSAC.2020.3000823
|
[79] |
GOUDELI E, PSOMAS C, and KRIKIDIS I. Spatial-modulation-based techniques for backscatter communication systems[J]. IEEE Internet of Things Journal, 2020, 7(10): 10623–10634. doi: 10.1109/JIOT.2020.3005832
|
[80] |
LUAN Huixu, XIE Xie, HAN Luyang, et al. A better than alamouti OSTBC for MIMO backscatter communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1117–1131. doi: 10.1109/TWC.2021.3102111
|
[81] |
LIU V, PARKS A, TALLA V, et al. Ambient backscatter: Wireless communication out of thin air[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 39–50. doi: 10.1145/2534169.2486015
|
[82] |
QIAN Jing, GAO Feifei, WANG Gongpu, et al. Semi-coherent detection and performance analysis for ambient backscatter system[J]. IEEE Transactions on Communications, 2017, 65(12): 5266–5279. doi: 10.1109/TCOMM.2017.2738001
|
[83] |
QIAN Jing, GAO Feifei, WANG Gongpu, et al. Noncoherent detections for ambient backscatter system[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1412–1422. doi: 10.1109/TWC.2016.2635654
|
[84] |
GURUACHARYA S, LU Xiao, and HOSSAIN E. Optimal non-coherent detector for ambient backscatter communication system[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16197–16201. doi: 10.1109/TVT.2020.3034317
|
[85] |
LIU Chang, WEI Zhiqiang, NG D W K, et al. Deep transfer learning for signal detection in ambient backscatter communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1624–1638. doi: 10.1109/TWC.2020.3034895
|
[86] |
MA Shuo, WANG Gongpu, WANG Yanwen, et al. Signal ratio detection and approximate performance analysis for ambient backscatter communication systems with multiple receiving antennas[J]. Mobile Networks and Applications, 2018, 23(6): 1478–1486. doi: 10.1007/s11036-017-0980-0
|
[87] |
CHEN Chen, WANG Gongpu, DIAMANTOULAKIS P D, et al. Signal detection and optimal antenna selection for ambient backscatter communications with multi-antenna tags[J]. IEEE Transactions on Communications, 2020, 68(1): 466–479. doi: 10.1109/TCOMM.2019.2946799
|
[88] |
CHEN Chen, WANG Gongpu, GUAN Hao, et al. Transceiver design and signal detection in backscatter communication systems with multiple-antenna tags[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3273–3288. doi: 10.1109/TWC.2020.2971990
|
[89] |
LIU Yuan, REN Pinyi, DU Qinghe, et al. Performance enhancement for differential energy signal detection of ambient backscatter communications[J]. Transactions on Emerging Telecommunications Technologies, 2022, 33(7): e4483. doi: 10.1002/ett.4483
|
[90] |
NEMATI M, DING Jie, and CHOI J. Short-range ambient backscatter communication using reconfigurable intelligent surfaces[C]. 2020 IEEE Wireless Communications and Networking Conference, Seoul, Korea (South), 2020: 1–6. doi: 10.1109/WCNC45663.2020.9120813.
|
[91] |
ZHAO Wenjing, WANG Gongpu, ATAPATTU S, et al. Performance analysis of large intelligent surface aided backscatter communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(7): 962–966. doi: 10.1109/lwc. 2020.2976934.
|
[92] |
ABEYWICKRAMA S, YOU Changsheng, ZHANG Rui, et al. Channel estimation for intelligent reflecting surface assisted backscatter communication[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2519–2523. doi: 10.1109/LWC.2021.3106165
|
[93] |
FARA R, PHAN-HUY D T, RATAJCZAK P, et al. Reconfigurable intelligent surface-assisted ambient backscatter communications-experimental assessment[C]. 2021 IEEE International Conference on Communications Workshops, Montreal, Canada, 2021: 1–7.
|
[94] |
CHEN Yunfei. Performance of ambient backscatter systems using reconfigurable intelligent surface[J]. IEEE Communications Letters, 2021, 25(8): 2536–2539. doi: 10.1109/LCOMM.2021.3083110
|
[95] |
LIANG Yingchang, ZHANG Qianqian, WANG Jun, et al. Backscatter communication assisted by reconfigurable intelligent surfaces[J]. Proceedings of the IEEE, 2022, 110(9): 1339–1357. doi: 10.1109/JPROC.2022.3169622
|
[96] |
KANTAREDDY S N R, MATHEWS I, BHATTACHARYYA R, et al. Long range battery-less PV-powered RFID tag sensors[J]. IEEE Internet of Things Journal, 2019, 6(4): 6989–6996. doi: 10.1109/JIOT.2019.2913403
|
[97] |
LU Yingxian, BASSET P, and LAHEURTE J M. Performance evaluation of a long-range RFID tag powered by a vibration energy harvester[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1832–1835. doi: 10.1109/lawp.2017.2682419
|
[98] |
AMATO F, TORUN H M, and DURGIN G D. RFID backscattering in long-range scenarios[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2718–2725. doi: 10.1109/TWC.2018.2801803
|
[99] |
HU Jie, YANG Kun, WEN Guangjun, et al. Integrated data and energy communication network: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3169–3219. doi: 10.1109/COMST.2018.2860778
|
[100] |
GROVER P and SAHAI A. Shannon meets Tesla: Wireless information and power transfer[C]. 2010 IEEE International Symposium on Information Theory, Austin, USA, 2010: 2363–2367. doi: 10.1109/ISIT.2010.5513714.
|
[101] |
ZHOU Xun, ZHANG Rui, and HO C K. Wireless information and power transfer: Architecture design and rate-energy tradeoff[J]. IEEE Transactions on Communications, 2013, 61(11): 4754–4767. doi: 10.1109/TCOMM.2013.13.120855
|
[102] |
KANG J M, KIM I M, and KIM D I. Wireless information and power transfer: Rate-energy tradeoff for nonlinear energy harvesting[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1966–1981. doi: 10.1109/TWC.2017.2787569
|
[103] |
FANG Zhaoxi, YUAN Xiaojun, and WANG Xin. Distributed energy beamforming for simultaneous wireless information and power transfer in the two-way relay channel[J]. IEEE Signal Processing Letters, 2015, 22(6): 656–660. doi: 10.1109/LSP.2014.2365718
|
[104] |
JANG H H, CHOI K W, and KIM D I. Novel frequency-splitting SWIPT for overcoming amplifier nonlinearity[J]. IEEE Wireless Communications Letters, 2020, 9(6): 826–829. doi: 10.1109/LWC.2020.2971983
|
[105] |
CLERCKX B, KIM J, CHOI K W, et al. Foundations of wireless information and power transfer: Theory, prototypes, and experiments[J]. Proceedings of the IEEE, 2022, 110(1): 8–30. doi: 10.1109/JPROC.2021.3132369
|
[106] |
PARK J J, MOON J H, LEE K Y, et al. Transmitter-oriented dual-mode SWIPT with deep-learning-based adaptive mode switching for IoT sensor networks[J]. IEEE Internet of Things Journal, 2020, 7(9): 8979–8992. doi: 10.1109/JIOT.2020.2999892
|
[107] |
TANDON A, MOTANI M, and VARSHNEY L R. Constant subblock composition codes for simultaneous energy and information transfer[C]. The 11th Annual IEEE International Conference on Sensing, Communication, and Networking Workshops, Singapore, 2014: 45–50.
|
[108] |
TANDON A, MOTANI M, and VARSHNEY L R. Real-time simultaneous energy and information transfer[C]. 2015 IEEE International Symposium on Information Theory, Hong Kong, China, 2015: 1124–1128.
|
[109] |
TANDON A, MOTANI M, and VARSHNEY L R. Subblock-constrained codes for real-time simultaneous energy and information transfer[J]. IEEE Transactions on Information Theory, 2016, 62(7): 4212–4227. doi: 10.1109/TIT.2016.2559504
|
[110] |
IM C, LEE J W, and LEE C. A multi-tone amplitude modulation scheme for wireless information and power transfer[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1147–1151. doi: 10.1109/TVT.2019.2954860
|
[111] |
HU Jie, LI Mengyuan, YANG Kun, et al. Unary coding controlled simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 637–649. doi: 10.1109/TWC.2019.2947491
|
[112] |
ZHAO Yizhe, HU Jie, YANG Kun, et al. Unary coding design for simultaneous wireless information and power transfer with practical M-QAM[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 2850–2862. doi: 10.1109/TWC.2020.3044722
|