Advanced Search
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
ZHOU Tao, DANG Pei, LU Huiling, HOU Senbao, PENG Caiyue, SHI Hongbin. A Transformer Segmentation Model for PET/CT Images with Cross-modal, Cross-scale and Cross-dimensional[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3529-3537. doi: 10.11999/JEIT221204
Citation: ZHOU Tao, DANG Pei, LU Huiling, HOU Senbao, PENG Caiyue, SHI Hongbin. A Transformer Segmentation Model for PET/CT Images with Cross-modal, Cross-scale and Cross-dimensional[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3529-3537. doi: 10.11999/JEIT221204

A Transformer Segmentation Model for PET/CT Images with Cross-modal, Cross-scale and Cross-dimensional

doi: 10.11999/JEIT221204
Funds:  The National Natural Science Foundation of China (62062003), The Natural Science Foundation of Ningxia (2022AAC03149), The Introduction of Talents and Scientific Research Start-up Project of Northern University for Nationalities (2020KYQD08)
  • Received Date: 2022-09-15
  • Rev Recd Date: 2022-12-09
  • Available Online: 2022-12-12
  • Publish Date: 2023-10-31
  • Multi-modal medical images can effectively fuse anatomical images and functional images. It reflects the functional and anatomical information within the body on the same image, which gives rise to critical clinical implications. How to utilize efficiently the comprehensive representation capabilities of multimodal medical image information and how to extract adequately cross-scale contextual information are key questions. In this paper, a Transformer segmentation model for PET/CT images with cross-modal, cross-scale and cross-dimension is proposed. The main improvements of the model are as follows: Firstly, PET/CT backbone branch, PET auxiliary branch, and CT auxiliary branch are designed to extract multi-modal image information in the encoder section; Secondly, a cross-modal and cross-dimensional attention module is designed in the skip connection part. The valid information in each dimension of the cross-modal images is captured by this module from both modal and dimensional views; Thirdly, a cross-scale Transformer module is designed at the bottleneck level. Deep semantic information and shallow spatial information are adaptively fused by this model, which can enable the network to learn more contextual information and obtain cross-scale global information; Finally, a multi-scale adaptive decoding feature fusion module is proposed in the decoder part. The multi-scale feature maps with different levels of detail are aggregated and fully utilized in the decoding path, and the noise introduced by upsampling is mitigated in this module. The effectiveness of the algorithm is verified by using a clinical multi-modal lung medical image dataset. All results show that the Acc, Recall, Dice, Voe, Rvd and Miou of the proposed model for lung lesion segmentation are: 97.99%, 94.29%, 95.32%, 92.74%, 92.95% and 90.14%. For the segmentation of lung lesions with complex shapes, it has high accuracy and relatively low redundancy.
  • loading
  • [1]
    WANG Xue, LI Zhanshan, HUANG Yongping, et al. Multimodal medical image segmentation using multi-scale context-aware network[J]. Neurocomputing, 2022, 486: 135–146. doi: 10.1016/j.neucom.2021.11.017
    [2]
    FU Xiaohang, LEI Bi, KUMAR A, et al. Multimodal spatial attention module for targeting multimodal PET-CT lung tumor segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(9): 3507–3516. doi: 10.1109/JBHI.2021.3059453
    [3]
    周涛, 董雅丽, 刘珊, 等. 用于肺部肿瘤图像分割的跨模态多编码混合注意力U-Net[J]. 光子学报, 2022, 51(4): 0410006. doi: 10.3788/gzxb20225104.0410006

    ZHOU Tao, DONG Yali, LIU Shan, et al. Cross-modality multi-encoder hybrid attention U-Net for lung tumors images segmentation[J]. Acta Photonica Sinica, 2022, 51(4): 0410006. doi: 10.3788/gzxb20225104.0410006
    [4]
    KUMAR A, FULHAM M, FENG Dagan, et al. Co-learning feature fusion maps from PET-CT images of lung cancer[J]. IEEE Transactions on Medical Imaging, 2020, 39(1): 204–217. doi: 10.1109/TMI.2019.2923601
    [5]
    田永林, 王雨桐, 王建功, 等. 视觉Transformer研究的关键问题: 现状及展望[J]. 自动化学报, 2022, 48(4): 957–979. doi: 10.16383/j.aas.c220027

    TIAN Yonglin, WANG Yutong, WANG Jiangong, et al. Key problems and progress of vision transformers: The state of the art and prospects[J]. Acta Automatica Sinica, 2022, 48(4): 957–979. doi: 10.16383/j.aas.c220027
    [6]
    胡敏, 周秀东, 黄宏程, 等. 基于改进U型神经网络的脑出血CT图像分割[J]. 电子与信息学报, 2022, 44(1): 127–137. doi: 10.11999/JEIT200996

    HU Min, ZHOU Xiudong, HUANG Hongcheng, et al. Computed-tomography image segmentation of cerebral hemorrhage based on improved U-shaped neural network[J]. Journal of Electronics &Information Technology, 2022, 44(1): 127–137. doi: 10.11999/JEIT200996
    [7]
    WANG Ziyue, PENG Yanjun, LI Dapeng, et al. MMNet: A multi-scale deep learning network for the left ventricular segmentation of cardiac MRI images[J]. Applied Intelligence, 2022, 52(5): 5225–5240. doi: 10.1007/s10489-021-02720-9
    [8]
    ZHOU Tao, YE Xinyu, LU Huiling, et al. Dense convolutional network and its application in medical image analysis[J]. BioMed Research International, 2022, 2022: 2384830. doi: 10.1155/2022/2384830
    [9]
    LIU Songtao, HUANG Di, and WANG Yunhong. Learning spatial fusion for single-shot object detection[EB/OL]. https://arxiv.org/abs/1911.09516v1, 2019.
    [10]
    WANG Meng, ZHU Weifang, SHI Fei, et al. MsTGANet: Automatic drusen segmentation from retinal OCT images[J]. IEEE Transactions on Medical Imaging, 2022, 41(2): 394–406. doi: 10.1109/TMI.2021.3112716
    [11]
    RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 2015: 234–241.
    [12]
    LAN Hengrong, JIANG Daohuai, YANG Changchun, et al. Y-Net: Hybrid deep learning image reconstruction for photoacoustic tomography in vivo[J]. Photoacoustics, 2020, 20: 100197. doi: 10.1016/j.pacs.2020.100197
    [13]
    ZHOU Zongwei, SIDDIQUEE M R, TAJBAKHSH N, et al. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867. doi: 10.1109/TMI.2019.2959609
    [14]
    BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
    [15]
    OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: Learning where to look for the pancreas[EB/OL]. https://arxiv.org/abs/1804.03999, 2018.
    [16]
    CAO Zheng, YU Bohan, LEI Biwen, et al. Cascaded SE-ResUnet for segmentation of thoracic organs at risk[J]. Neurocomputing, 2021, 453: 357–368. doi: 10.1016/j.neucom.2020.08.086
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (1068) PDF downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return