Advanced Search
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
CUI Yaqi, XU Pingliang, GONG Cheng, YU Zhouchuan, ZHANG Jianting, YU Hongbo, DONG Kai. Multisource Track Association Dataset Based on the Global AIS[J]. Journal of Electronics & Information Technology, 2023, 45(2): 746-756. doi: 10.11999/JEIT221202
Citation: CUI Yaqi, XU Pingliang, GONG Cheng, YU Zhouchuan, ZHANG Jianting, YU Hongbo, DONG Kai. Multisource Track Association Dataset Based on the Global AIS[J]. Journal of Electronics & Information Technology, 2023, 45(2): 746-756. doi: 10.11999/JEIT221202

Multisource Track Association Dataset Based on the Global AIS

doi: 10.11999/JEIT221202
Funds:  The National Natural Science Foundation of China (61790554, 62001499, 62171453)
  • Received Date: 2022-09-15
  • Rev Recd Date: 2022-10-30
  • Available Online: 2022-11-03
  • Publish Date: 2023-02-07
  • Data, algorithms, and hash rates are the three thrust forces for developing artificial intelligence. Considering the urgent demand for research on the intelligent association algorithm and the difficulty of obtaining track data from multi-radar collaborative observation and addressing the problem of missing track association dataset, a Multi-source Track Association Dataset (MTAD) is constructed in this study. MTAD is based on automatic identification system trajectory data after processing grid division, automatic interruption, and error adding. The dataset includes two parts, namely, the training dataset and the test dataset, with more than 1 million tracks. The train and test datasets contain 5000 and 1000 scene samples, respectively. Each scene sample consists of several to hundreds of tracks, covering various movement patterns, target types, and duration times. In addition, the constructed MTAD is further visualized and analyzed, and the characteristics of tracks in each grid are studied in detail, demonstrating the richness, rationality, and effectiveness of the MTAD. The indicators and baseline results of the association are obtained. This dataset has already been used as a dedicated dataset for the Navy’s “Golden Dolphin” Cup competition.
  • loading
  • [1]
    BAR-SHALOM Y. Multitarget-Multisensor Tracking: Advanced Applications[M]. Norwood: Artech House, 1990.
    [2]
    ENDSLEY M R. Situation awareness global assessment technique (SAGAT)[C]. Proceedings of the IEEE 1988 National Aerospace and Electronics Conference, Dayton, USA, 1988: 789–795.
    [3]
    HALL D L and LLINAS J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997, 85(1): 6–23. doi: 10.1109/5.554205
    [4]
    MUCCI R, ARNOLD J, and BAR-SHALOM Y. Track segment association with a distributed field of sensors[J]. The Journal of the Acoustical Society of America, 1985, 78(4): 1317–1324. doi: 10.1121/1.392901
    [5]
    YEOM S W, KIRUBARAJAN T, and BAR-SHALOM Y. Improving track continuity using track segment association[C]. 2003 IEEE Aerospace Conference Proceedings, Big Sky, USA, 2003, 4: 1925–1941.
    [6]
    LIN L, BAR-SHALOM Y, and KIRUBARAJAN T. New assignment-based data association for tracking move-stop-move targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 714–725. doi: 10.1109/TAES.2004.1310016
    [7]
    ZHANG Shuo and BAR-SHALOM Y. Track segment association for GMTI tracks of evasive move-stop-move maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1899–1914. doi: 10.1109/TAES.2011.5937272
    [8]
    齐林, 王海鹏, 熊伟, 等. 基于先验信息的多假设模型中断航迹关联算法[J]. 系统工程与电子技术, 2015, 37(4): 732–739. doi: 10.3969/j.issn.1001-506X.2015.04.02

    QI Lin, WANG Haipeng, XIONG Wei, et al. Track segment association algorithm based on multiple-hypothesis models with priori information[J]. Systems Engineering and Electronics, 2015, 37(4): 732–739. doi: 10.3969/j.issn.1001-506X.2015.04.02
    [9]
    XIONG Wei, XU Pingliang, CUI Yaqi, et al. Track segment association with dual contrast neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 247–261. doi: 10.1109/TAES.2021.3098175
    [10]
    XIONG Wei, XU Pingliang, CUI Yaqi, et al. Track segment association via track graph representation learning[J]. IET Radar, Sonar & Navigation, 2021, 15(11): 1458–1471. doi: 10.1049/rsn2.12138
    [11]
    徐平亮, 崔亚奇, 熊伟, 等. 生成式中断航迹接续关联方法[J]. 系统工程与电子技术, 2022, 44(5): 1543–1552. doi: 10.12305/j.issn.1001-506X.2022.05.15

    XU Pingliang, CUI Yaqi, XIONG Wei, et al. Generative track segment consecutive association method[J]. Systems Engineering and Electronics, 2022, 44(5): 1543–1552. doi: 10.12305/j.issn.1001-506X.2022.05.15
    [12]
    DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255.
    [13]
    EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The PASCAL visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98–136. doi: 10.1007/s11263-014-0733-5
    [14]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755.
    [15]
    XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945
    [16]
    LU Xiaoqiang, WANG Binqiang, ZHENG Xiangtao, et al. Exploring models and data for remote sensing image caption generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(4): 2183–2195. doi: 10.1109/TGRS.2017.2776321
    [17]
    GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231–1237. doi: 10.1177/0278364913491297
    [18]
    BILIC P, CHRIST P F, VORONTSOV E, et al. The liver tumor segmentation benchmark (LiTS)[J]. arXiv preprint arXiv: 1901.04056, 2019.
    [19]
    IRVIN J, RAJPURKAR P, KO M, et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 590–597. doi: 10.1609/aaai.v33i01.3301590
    [20]
    DESAI S, BAGHAL A, WONGSURAWAT T, et al. Chest imaging representing a COVID-19 positive rural U. S. population[J]. Scientific Data, 2020, 7(1): 414. doi: 10.6084/m9.figshare.12980795
    [21]
    TETREAULT B J. Use of the automatic identification system (AIS) for maritime domain awareness (MDA)[C]. Proceedings of Oceans 2005 MTS/IEEE, Washington, USA, 2005: 1590–1594.
    [22]
    CHEN Zhijun, XUE Jie, WU Chaozhong, et al. Classification of vessel motion pattern in inland waterways based on automatic identification system[J]. Ocean Engineering, 2018, 161: 69–76. doi: 10.1016/j.oceaneng.2018.04.072
    [23]
    KONG Zhan, CUI Yaqi, XIONG Wei, et al. Ship target identification via Bayesian-transformer neural network[J]. Journal of Marine Science and Engineering, 2022, 10(5): 577. doi: 10.3390/jmse10050577
    [24]
    PAPI F, TARCHI D, VESPE M, et al. Radiolocation and tracking of automatic identification system signals for maritime situational awareness[J]. IET Radar, Sonar & Navigation, 2015, 9(5): 568–580. doi: 10.1049/iet-rsn.2014.0292
    [25]
    LIU Yong, YAO Libo, XIONG Wei, et al. GF-4 satellite and automatic identification system data fusion for ship tracking[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 281–285. doi: 10.1109/LGRS.2018.2869561
    [26]
    SCHWEHR K D and MCGILLIVARY P A. Marine ship automatic identification system (AIS) for enhanced coastal security capabilities: An oil spill tracking application[C]. OCEANS 2007, Vancouver, Canada, 2007: 1–9.
    [27]
    CHEN M Y and WU H T. An automatic-identification-system-based vessel security system[J]. IEEE Transactions on Industrial Informatics, 2022, 19(1): 870–879.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (2429) PDF downloads(470) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return