Citation: | YU Hongxin, FENG Ju, DU Wei, LIAO Cheng. Propagation Modeling of Backscatter Communication Channels Assisted by Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2317-2324. doi: 10.11999/JEIT221195 |
[1] |
STOCKMAN H. Communication by means of reflected power[J]. Proceedings of the IRE, 1948, 36(10): 1196–1204. doi: 10.1109/JRPROC.1948.226245
|
[2] |
徐勇军, 杨浩克, 叶迎晖, 等. 反向散射通信网络资源分配综述[J]. 物联网学报, 2021, 5(3): 56–69. doi: 10.11959/j.issn.2096-3750.2021.00215
XU Yongjun, YANG Haoke, YE Yinghui, et al. A survey on resource allocation in backscatter communication networks[J]. Chinese Journal on Internet of Things, 2021, 5(3): 56–69. doi: 10.11959/j.issn.2096-3750.2021.00215
|
[3] |
GRIFFIN J D and DURGIN G D. Complete link budgets for backscatter-radio and RFID systems[J]. IEEE Antennas and Propagation Magazine, 2009, 51(2): 11–25. doi: 10.1109/MAP.2009.5162013
|
[4] |
KIMIONIS J, BLETSAS A, and SAHALOS J N. Increased range bistatic scatter radio[J]. IEEE Transactions on Communications, 2014, 62(3): 1091–1104. doi: 10.1109/TCOMM.2014.020314.130559
|
[5] |
LIU V, PARKS A, TALLA V, et al. Ambient backscatter: Wireless communication out of thin air[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 39–50. doi: 10.1145/2534169.2486015
|
[6] |
WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
|
[7] |
JIA Xiaolun and ZHOU Xiangyun. IRS-assisted ambient backscatter communications utilizing deep reinforcement learning[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2374–2378. doi: 10.1109/LWC.2021.3100901
|
[8] |
ÖZDOGAN Ö, BJÖRNSON E, and LARSSON E G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling[J]. IEEE Wireless Communications Letters, 2020, 9(5): 581–585. doi: 10.1109/LWC.2019.2960779
|
[9] |
NAJAFI M, JAMALI V, SCHOBER R, et al. Physics-based modeling and scalable optimization of large intelligent reflecting surfaces[J]. IEEE Transactions on Communications, 2021, 69(4): 2673–2691. doi: 10.1109/TCOMM.2020.3047098
|
[10] |
ZHOU Ruya, CHEN Xiangyu, TANG Wankai, et al. Modeling and measurements for multi-path mitigation with reconfigurable intelligent surfaces[C]. 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 2022: 1–5.
|
[11] |
SARKAR D and ANTAR Y. Electromagnetic insights into path loss modelling of IRS-assisted SISO links: Method-of-moment based analysis[J]. Frontiers in Communications and Networks, 2021, 2: 733698. doi: 10.3389/frcmn.2021.733698
|
[12] |
XING Yunchou, VOOK F, VISOTSKY E, et al. Raytracing-based system performance of intelligent reflecting surfaces at 28 GHz[C]. ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, 2022: 498–503.
|
[13] |
GRADONI G and RENZO M D. End-to-end mutual coupling aware communication model for reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on mutual impedances[J]. IEEE Wireless Communications Letters, 2021, 10(5): 938–942. doi: 10.1109/LWC.2021.3050826
|
[14] |
SARKAR D, MIKKI S, ANTAR Y, et al. An electromagnetic framework for the deployment of reconfigurable intelligent surfaces to control massive MIMO channel characteristics[C]. 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–4.
|
[15] |
LEVY M. Parabolic Equation Methods for Electromagnetic Wave Propagation[M]. London: IEEE, 2000: 5.
|
[16] |
MAKAROV S N. Antenna and EM Modeling with MATLAB[M]. New York: John Wiley & Sons, 2002.
|
[17] |
JANASWAMY R. Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1716–1728. doi: 10.1109/TAP.2003.815415
|
[18] |
LYTAEV M, BORISOV E, and VLADYKO A. V2I propagation loss predictions in simplified urban environment: A two-way parabolic equation approach[J]. Electronics, 2020, 9(12): 2011. doi: 10.3390/electronics9122011
|
[19] |
AHDAB Z E and AKLEMAN F. Radiowave propagation analysis with a bidirectional 3-D vector parabolic equation method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1958–1966. doi: 10.1109/TAP.2017.2670321
|
[20] |
张青洪. 大区域地理环境的电磁建模及高效抛物方程方法研究[D]. [博士论文], 西南交通大学, 2016.
ZHANG Qinghong. Study on electromagnetic modeling of large area geographical environment and efficient parabolic equation method[D]. [Ph. D. dissertation], Southwest Jiaotong University, 2016.
|