Citation: | YANG Zhigang, WANG Zhuotong, WU Dapeng, WANG Ruyan, WU Yu, LÜ Yi. Research on Data Heterogeneous Robust Federated Learning with Privacy Protection in Internet of Things[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4235-4244. doi: 10.11999/JEIT221193 |
[1] |
黄新林, 郑人华. 基于强化学习的802.11ax上行链路调度算法[J]. 电子与信息学报, 2022, 44(5): 1800–1808. doi: 10.11999/JEIT210590
HUANG Xinlin and ZHENG Renhua. 802.11ax uplink scheduling algorithm based on reinforcement learning[J]. Journal of Electronics &Information Technology, 2022, 44(5): 1800–1808. doi: 10.11999/JEIT210590
|
[2] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[3] |
BLANCHARD P, EL MHAMDI E M, GUERRAOUI R, et al. Machine learning with adversaries: Byzantine tolerant gradient descent[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 118–128.
|
[4] |
YIN Dong, CHEN Yudong, RAMCHANDRAN K, et al. Byzantine-robust distributed learning: Towards optimal statistical rates[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 5636–5645.
|
[5] |
MELIS L, SONG Congzheng, DE CRISTOFARO E, et al. Exploiting unintended feature leakage in collaborative learning[C]. 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2019: 691–706.
|
[6] |
XIONG Jinbo, BI Renwan, TIAN Youliang, et al. Toward lightweight, privacy-preserving cooperative object classification for connected autonomous vehicles[J]. IEEE Internet of Things Journal, 2022, 9(4): 2787–2801. doi: 10.1109/JIOT.2021.3093573
|
[7] |
BI Renwan, XIONG Jinbo, TIAN Youliang, et al. Achieving lightweight and privacy-preserving object detection for connected autonomous vehicles[J]. IEEE Internet of Things Journal, 2023, 10(3): 2314–2329. doi: 10.1109/JIOT.2022.3212464
|
[8] |
ZAWAD S, ALI A, CHEN Pinyu, et al. Curse or redemption? How data heterogeneity affects the robustness of federated learning[C]. The 35th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2021: 10807–10814.
|
[9] |
ZHAI Kun, REN Qiang, WANG Junli, et al. Byzantine-robust federated learning via credibility assessment on non-IID data[J]. arXiv: 2109.02396, 2021.
|
[10] |
LI Liping, XU Wei, CHEN Tianyi, et al. RSA: Byzantine-robust stochastic aggregation methods for distributed learning from heterogeneous datasets[C]. The 33rd AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019: 1544–1551.
|
[11] |
ZHANG Chengliang, LI Suyi, XIA Junzhe, et al. BatchCrypt: Efficient homomorphic encryption for cross-silo federated learning[C]. The 2020 USENIX Conference on Usenix Annual Technical Conference, Boston, USA, 2020: 33.
|
[12] |
FU Anmin, ZHANG Xianglong, XIONG Naixue, et al. VFL: A verifiable federated learning with privacy-preserving for big data in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3316–3326. doi: 10.1109/TII.2020.3036166
|
[13] |
SO J, GÜLER B, and AVESTIMEHR A S. Byzantine-resilient secure federated learning[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 2168–2181. doi: 10.1109/JSAC.2020.3041404
|
[14] |
LIU Xiaoyuan, LI Hongwei, XU Guowen, et al. Privacy-enhanced federated learning against poisoning adversaries[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 4574–4588. doi: 10.1109/TIFS.2021.3108434
|
[15] |
HSIEH K, HARLAP A, VIJAYKUMAR N, et al. Gaia: Geo-distributed machine learning approaching LAN speeds[C]. The 14th USENIX Conference on Networked Systems Design and Implementation, Boston, USA, 2017: 629–647.
|
[16] |
LI Yiran, LI Hongwei, XU Guowen, et al. Efficient privacy-preserving federated learning with unreliable users[J]. IEEE Internet of Things Journal, 2021, 9(13): 11590–11603. doi: 10.1109/JIOT.2021.3130115
|
[17] |
ZHU Wanchuang, ZHAO B Z H, LUO S, et al. MANDERA: Malicious node detection in federated learning via ranking[J]. arXiv: 2110.11736, 2021.
|
[18] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
|
[19] |
XIAO Han, RASUL K, and VOLLGRAF R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms[J]. arXiv: 1708.07747, 2017.
|
[20] |
WANG Hao, KAPLAN Z, NIU Di, et al. Optimizing federated learning on non-IID data with reinforcement learning[C]. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, Toronto, Canada, 2020: 1698–1707.
|