Advanced Search
Volume 45 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
WANG Zhengqiang, QING Siyu, WAN Xiaoyu, FAN Zifu, XU Yongjun, DUO Bin. Secrecy Rate Maximization Algorithm for IRS Assisted NOMA-UAV Networks[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4203-4210. doi: 10.11999/JEIT221189
Citation: WANG Zhengqiang, QING Siyu, WAN Xiaoyu, FAN Zifu, XU Yongjun, DUO Bin. Secrecy Rate Maximization Algorithm for IRS Assisted NOMA-UAV Networks[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4203-4210. doi: 10.11999/JEIT221189

Secrecy Rate Maximization Algorithm for IRS Assisted NOMA-UAV Networks

doi: 10.11999/JEIT221189
Funds:  The National Natural Science Foundation of China (61701064, 62271094), The Sichuan Regional Innovation Cooperation Project (2022YFQ0017), The Special Support for Chongqing Postdoctoral Research Project (2021XM3082)
  • Received Date: 2022-09-13
  • Accepted Date: 2022-12-20
  • Rev Recd Date: 2022-12-08
  • Available Online: 2022-12-23
  • Publish Date: 2023-12-26
  • In this paper, secure transmission in Intelligent Reflecting Surface (IRS) assisted Unmanned Aerial Vehicle (UAV) networks based on Non-Orthogonal Multiple Access (NOMA) is investigated. A joint placement and transmit power of UAV, successive interference cancellation decoding orders, and reflecting matrix of IRS optimization problem is formulated to maximize the secrecy rate. Since the problem is mixed-integer non-convex and challenging to solve, a block coordinate descent based iterative algorithm is developed. The original problem is decomposed into three subproblems, which are solved by exploiting the penalty-based method, the semidefinite relaxation technique, and the successive convex approximation technique. Simulation results demonstrate that the security rate of the proposed scheme is better than the scheme without IRS assisted NOMA network and the scheme without IRS assisted orthogonal multiple access network.
  • loading
  • [1]
    ZHANG Xing, ZHANG Yan, YU Rong, et al. Enhancing spectral-energy efficiency for LTE-advanced heterogeneous networks: A users social pattern perspective[J]. IEEE Wireless Communications, 2014, 21(2): 10–17. doi: 10.1109/MWC.2014.6812286
    [2]
    MATOLAK D W and SUN Ruoyu. Air–ground channel characterization for unmanned aircraft systems—part Ⅲ: The suburban and near-urban environments[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6607–6618. doi: 10.1109/TVT.2017.2659651
    [3]
    OUBBATI O S, ATIQUZZAMAN M, AHANGER T A, et al. Softwarization of UAV networks: A survey of applications and future trends[J]. IEEE Access, 2020, 8: 98073–98125. doi: 10.1109/ACCESS.2020.2994494
    [4]
    MARAQA O, RAJASEKARAN A S, AL-AHMADI S, et al. A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2192–2235. doi: 10.1109/COMST.2020.3013514
    [5]
    WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [6]
    WU Huici, LI Hanjie, WEI Zhiqing, et al. Secrecy performance analysis of air-to-ground communication with UAV jitter and multiple random walking eavesdroppers[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 572–584. doi: 10.1109/TVT.2020.3047082
    [7]
    WU Xuemeng, WEI Zaixue, CHENG Zhenqiao, et al. Joint optimization of UAV trajectory and user scheduling based on NOMA technology[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6.
    [8]
    PANG Xiaowei, LI Zan, CHEN Xiaoming, et al. UAV-aided NOMA networks with optimization of trajectory and precoding[C]. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2018: 1–6.
    [9]
    DUO Bin, LUO Junsong, LI Yilian, et al. Joint trajectory and power optimization for securing UAV communications against active eavesdropping[J]. China Communications, 2021, 18(1): 88–99. doi: 10.23919/JCC.2021.01.008
    [10]
    GAO Ying, TANG Hongying, LI Baoqing, et al. Joint trajectory and power design for UAV-enabled secure communications with No-Fly zone constraints[J]. IEEE Access, 2019, 7: 44459–44470. doi: 10.1109/ACCESS.2019.2908407
    [11]
    MU Xidong, LIU Yuanwei, GUO Li, et al. Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6884–6898. doi: 10.1109/TWC.2020.3006915
    [12]
    ZUO Jiakuo, LIU Yuanwei, BASAR E, et al. Intelligent reflecting surface enhanced millimeter-wave NOMA systems[J]. IEEE Communications Letters, 2020, 24(11): 2632–2636. doi: 10.1109/LCOMM.2020.3009158
    [13]
    GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629
    [14]
    CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685
    [15]
    FANG Sisai, CHEN Gaojie, and LI Yonghui. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J]. IEEE Wireless Communications Letters, 2021, 10(2): 276–280. doi: 10.1109/LWC.2020.3027969
    [16]
    LI Sixian, DUO Bin, DI RENZO M, et al. Robust secure UAV communications with the aid of reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6402–6417. doi: 10.1109/TWC.2021.3073746
    [17]
    MU Xidong, LIU Yuanwei, GUO Li, et al. Intelligent reflecting surface enhanced multi-UAV NOMA networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3051–3066. doi: 10.1109/JSAC.2021.3088679
    [18]
    HUA Meng, YANG Luxi, WU Qingqing, et al. 3D UAV trajectory and communication design for simultaneous uplink and downlink transmission[J]. IEEE Transactions on Communications, 2020, 68(9): 5908–5923. doi: 10.1109/TCOMM.2020.3003662
    [19]
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 67–89.
    [20]
    LI Zhendong, CHEN Wen, WU Qingqing, et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2019–2033. doi: 10.1109/TWC.2021.3108901
    [21]
    MAO Sun, LENG Supeng, HU Jie, et al. Power minimization resource allocation for underlay MISO-NOMA SWIPT systems[J]. IEEE Access, 2019, 7: 17247–17255. doi: 10.1109/ACCESS.2019.2892321
    [22]
    LI Dong. Ergodic capacity of intelligent reflecting surface-assisted communication systems with phase errors[J]. IEEE Communications Letters, 2020, 24(8): 1646–1650. doi: 10.1109/LCOMM.2020.2997027
    [23]
    LI Dong. How many reflecting elements are needed for energy- and spectral-efficient intelligent reflecting surface-assisted communication[J]. IEEE Transactions on Communications, 2022, 70(2): 1320–1331. doi: 10.1109/TCOMM.2021.3128544
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (1209) PDF downloads(407) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return