Citation: | ZHOU Tao, YE Xinyu, LIU Fengzhen, LU Huiling, ZHOU Jingce, DU Yuhu. Dense Heavy Parameter Lightweight Transformer Model for CT Image Recognition of COVID-19[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3520-3528. doi: 10.11999/JEIT221180 |
[1] |
KAYA A T and AKMAN B. Mediastinal lymph node enlargement in COVID-19: Relationships with mortality and CT findings[J]. Heart & Lung, 2022, 54: 19–26. doi: 10.1016/j.hrtlng.2022.03.006
|
[2] |
周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用: 研究进展与挑战[J]. 电子与信息学报, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914
ZHOU Tao, LIU Yuncan, LU Huiling, et al. ResNet and its application to medical image processing: Research progress and challenges[J]. Journal of Electronics &Information Technology, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914
|
[3] |
SONG Ying, ZHENG Shuangjia, LI Liang, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(6): 2775–2780. doi: 10.1109/TCBB.2021.3065361
|
[4] |
YE Qinghao, GAO Yuan, DING Weiping, et al. Robust weakly supervised learning for COVID-19 recognition using multi-center CT images[J]. Applied Soft Computing, 2022, 116: 108291. doi: 10.1016/j.asoc.2021.108291
|
[5] |
RAHHAL M, BAZI Y, JOMAA R M, et al. Deep learning approach for COVID-19 detection in computed tomography images[J]. Computers, Materials & Continua, 2021, 67(2): 2093–2110. doi: 10.32604/CMC.2021.014956
|
[6] |
KONG Lingzhi and CHENG Jinyong. Classification and detection of COVID-19 X-Ray images based on DenseNet and VGG16 feature fusion[J]. Biomedical Signal Processing and Control, 2022, 77: 103772. doi: 10.1016/j.bspc.2022.103772
|
[7] |
GARG A, SALEHI S, LA ROCCA M, et al. Efficient and visualizable convolutional neural networks for COVID-19 classification using Chest CT[J]. Expert Systems with Applications, 2022, 195: 116540. doi: 10.1016/j.eswa.2022.116540
|
[8] |
MONTALBO F J P. Diagnosing Covid-19 chest x-rays with a lightweight truncated DenseNet with partial layer freezing and feature fusion[J]. Biomedical Signal Processing and Control, 2021, 68: 102583. doi: 10.1016/j.bspc.2021.102583
|
[9] |
ASIF S, ZHAO Ming, TANG Fengxiao, et al. A deep learning-based framework for detecting COVID-19 patients using chest X-rays[J]. Multimedia Systems, 2022, 28(4): 1495–1513. doi: 10.1007/s00530-022-00917-7
|
[10] |
CHAKRABORTY M, DHAVALE S V, and INGOLE J. Corona-Nidaan: Lightweight deep convolutional neural network for chest X-Ray based COVID-19 infection detection[J]. Applied Intelligence, 2021, 51(5): 3026–3043. doi: 10.1007/s10489-020-01978-9
|
[11] |
DEHKORDI H A, KASHIANI H, IMANI A A H, et al. Lightweight local transformer for COVID-19 detection using chest CT scans[C]. The 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), Tehran, Iran, 2021: 328–333.
|
[12] |
PARK S, KIM G, OH Y, et al. Multi-task vision Transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification[J]. Medical Image Analysis, 2022, 75: 102299. doi: 10.1016/j.media.2021.102299
|
[13] |
SOARES E, ANGELOV P, BIASO S, et al. SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification[EB/OL]. https://www.medrxiv.org/content/10.1101/2022.04.24.20078584, 2020.
|
[14] |
ZHAO Jinyu, ZHANG Yichen, HE Xuehai, et al. COVID-CT-dataset: A CT scan dataset about COVID-19[EB/OL].https://arxiv.org/abs/2003.13865v1, 2020.
|
[15] |
ZHOU Tao, YE Xinyu, LU Huiling, et al. Dense convolutional network and its application in medical image analysis[J]. BioMed Research International, 2022, 2022: 2384830. doi: 10.1155/2022/2384830
|
[16] |
RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10425–10433.
|
[17] |
PENG Zhiliang, HUANG Wei, GU Shanzhi, et al. Conformer: Local features coupling global representations for visual recognition[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 357–366,
|
[18] |
DING Xiaohan, ZHANG Xiangyu, ZHOU Yizhuang, et al. Scaling up your kernels to 31x31: Revisiting large kernel design in CNNs[J]. arXiv preprint arXiv: 2203.06717, 2022.
|
[19] |
RAVI V, NARASIMHAN H, CHAKRABORTY C, et al. Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images[J]. Multimedia Systems, 2022, 28(4): 1401–1415. doi: 10.1007/s00530-021-00826-1
|
[20] |
JAVADIMOGHADDAM S and GHOLAMALINEJAD H. A novel deep learning based method for COVID-19 detection from CT image[J]. Biomedical Signal Processing and Control, 2021, 70: 102987. doi: 10.1016/j.bspc.2021.102987
|
[21] |
ARDAKANI A A, KANAFI A R, ACHARYA U R, et al. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks[J]. Computers in Biology and Medicine, 2020, 121: 103795. doi: 10.1016/j.compbiomed.2020.103795
|