Citation: | LIU Yan, ZHAO Haitao, ZHANG Jiao, GONG Guangwei, PAN Xiaoqian, CHEN Haitao, WEI Jibo. Topology Optimization Based on Adaptive Hummingbird Algorithm in Flying Ad hoc Networks[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3685-3693. doi: 10.11999/JEIT221165 |
[1] |
WANG Haijun, ZHAO Haitao, ZHANG Jiao, et al. Survey on unmanned aerial vehicle networks: A cyber physical system perspective[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1027–1070. doi: 10.1109/COMST.2019.2962207
|
[2] |
赵太飞, 宫春杰, 张港, 等. 一种无人机集群安全高效的分区集结控制策略[J]. 电子与信息学报, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601
ZHAO Taifei, GONG Chunjie, ZHANG Gang, et al. A safe and high efficiency control strategy of unmanned aerial vehicles partition rendezvous[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601
|
[3] |
KIM D Y and LEE J W. Joint mission assignment and topology management in the mission-critical FANET[J]. IEEE Internet of Things Journal, 2020, 7(3): 2368–2385. doi: 10.1109/JIOT.2019.2958130
|
[4] |
CHOI H H, MUY S, and LEE J R. Geometric analysis-based cluster head selection for sectorized wireless powered sensor networks[J]. IEEE Wireless Communications Letters, 2021, 10(3): 649–653. doi: 10.1109/LWC.2020.3044902
|
[5] |
YANG Xinwei, YU Tianqi, CHEN Zhongyue, et al. An improved weighted and location-based clustering scheme for flying ad hoc networks[J]. Sensors, 2022, 22(9): 3236. doi: 10.3390/s22093236
|
[6] |
KHANMOHAMMADI E, BAREKATAIN B, and QUINTANA A A. An enhanced AHP-TOPSIS-based clustering algorithm for high-quality live video streaming in flying ad hoc networks[J]. The Journal of Supercomputing, 2021, 77(9): 10664–10698. doi: 10.1007/s11227-021-03645-3
|
[7] |
RAZA A, KHAN M F, MAQSOOD M, et al. Adaptive k-means clustering for flying ad-hoc networks[J]. KSII Transactions on Internet and Information Systems (TIIS), 2020, 14(6): 2670–2685. doi: 10.3837/tiis.2020.06.019
|
[8] |
PANDEY A, SHUKLA P K, and AGRAWAL R. Salp swarm optimization-based clustering algorithm (SSOCA) in adaptive FANET to improve QoS for disaster response operations[J]. Wireless Personal Communications, 2022, 126(3): 2801–2824. doi: 10.1007/s11277-022-09842-4
|
[9] |
BHARANY S, SHARMA S, BHATIA S, et al. Energy efficient clustering protocol for FANETS using moth flame optimization[J]. Sustainability, 2022, 14(10): 6159. doi: 10.3390/su14106159
|
[10] |
SEFATI S S, HALUNGA S, and FARKHADY R Z. Cluster selection for load balancing in flying ad hoc networks using an optimal low-energy adaptive clustering hierarchy based on optimization approach[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(8): 1344–1356. doi: 10.1108/AEAT-08-2021-0264
|
[11] |
SUN Guanyu, QIN Danyang, LAN Tingting, et al. Research on clustering routing protocol based on improved PSO in FANET[J]. IEEE Sensors Journal, 2021, 21(23): 27168–27185. doi: 10.1109/JSEN.2021.3117496
|
[12] |
KHAN A, AFTAB F, and ZHANG Zhongshan. BICSF: Bio-inspired clustering scheme for FANETs[J]. IEEE Access, 2019, 7: 31446–31456. doi: 10.1109/ACCESS.2019.2902940
|
[13] |
ZHAO Weiguo, WANG Liying, and MIRJALILI S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114194. doi: 10.1016/j.cma.2021.114194
|
[14] |
YOUNES O S and ALBALAWI U A. Analysis of route stability in mobile multihop networks under random waypoint mobility[J]. IEEE Access, 2020, 8: 168121–168136. doi: 10.1109/ACCESS.2020.3023142
|
[15] |
XUE Jiankai and SHEN Bo. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22–34. doi: 10.1080/21642583.2019.1708830
|
[16] |
NARUEI I and KEYNIA F. Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems[J]. Engineering with Computers, 2022, 38(4): 3025–3056. doi: 10.1007/s00366-021-01438-z
|