Advanced Search
Volume 45 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
TIAN Xudong, BAI Xueru, ZHOU Feng. Fusion Recognition of Space Targets with Micro-Motion Based on a Sparse Auto-Encoder[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4336-4344. doi: 10.11999/JEIT221163
Citation: TIAN Xudong, BAI Xueru, ZHOU Feng. Fusion Recognition of Space Targets with Micro-Motion Based on a Sparse Auto-Encoder[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4336-4344. doi: 10.11999/JEIT221163

Fusion Recognition of Space Targets with Micro-Motion Based on a Sparse Auto-Encoder

doi: 10.11999/JEIT221163
Funds:  The National Natural Science Foundation of China (62131020), The Fundamental Research Funds for the Central Universities
  • Received Date: 2022-09-06
  • Rev Recd Date: 2023-03-10
  • Available Online: 2023-03-16
  • Publish Date: 2023-12-26
  • During the observation of micro-motion targets in space, high resolution radar collects the narrowband and wideband echoes simultaneously. This paper proposes a fusion method based on a Sparse Auto-Encoder (SAE) for recognizing space micro-motion targets to exploit their rich electromagnetic scattering, shape, structure, and motion information. In the training phase, the proposed method extracts the hierarchical features from High Resolution Range Profiles (HRRP), Joint Time-Frequency (JTF) images, and Range-Instantaneous-Doppler (RID) images using Convolution Neural Networks (CNN). The joint feature vector is then created by concatenating the relevant deep features, and SAE learns autonomously its hidden features unsupervised. After that, the decoder is removed and the Softmax classifier is introduced after the encoder to create the recognition network. Finally, parameters of the optimized SAE network are used for the initialization of the recognition network, which is then fine-tuned by the joint feature vectors of training samples. In the test phase, the trained recognition network is supplied directly with the joint feature vectors of the test samples recovered by CNN to produce the fusion recognition results. Experimental results of simulated EM data under different conditions show the efficacy and robustness of the proposed method.
  • loading
  • [1]
    BAI Xueru, XING Mengdao, ZHOU Feng, et al. High-resolution three-dimensional imaging of spinning space debris[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2352–2362. doi: 10.1109/TGRS.2008.2010854
    [2]
    李瑞, 李开明, 张群, 等. 基于角多普勒效应的自旋目标微动特征提取[J]. 电子与信息学报, 2021, 43(3): 547–554. doi: 10.11999/JEIT200595

    LI Rui, LI Kaiming, ZHANG Qun, et al. Micro-motion feature extraction of spinning target based on angular Doppler effect[J]. Journal of Electronics &Information Technology, 2021, 43(3): 547–554. doi: 10.11999/JEIT200595
    [3]
    冯存前, 李江, 黄大荣, 等. 弹道中段不同平动多目标的平动参数估计方法[J]. 电子与信息学报, 2021, 43(3): 564–571. doi: 10.11999/JEIT200075

    FENG Cunqian, LI Jiang, HUANG Darong, et al. Estimation method of translational parameters for different translational of ballistic targets in midcourse[J]. Journal of Electronics &Information Technology, 2021, 43(3): 564–571. doi: 10.11999/JEIT200075
    [4]
    CHOI I O, PARK S H, KIM M, et al. Efficient discrimination of ballistic targets with micromotions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1243–1261. doi: 10.1109/TAES.2019.2928611
    [5]
    GAO Hongwei, XIE Lianggui, WEN Shuliang, et al. Micro-Doppler signature extraction from ballistic target with micro-motions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1969–1982. doi: 10.1109/TAES.2010.5595607
    [6]
    SHI Xiaoran, ZHOU Feng, LIU Lei, et al. Textural feature extraction based on time–frequency spectrograms of humans and vehicles[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1251–1259. doi: 10.1049/iet-rsn.2014.0432
    [7]
    PERSICO A R, CLEMENTE C, GAGLIONE D, et al. On model, algorithms, and experiment for micro-Doppler-based recognition of ballistic targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1088–1108. doi: 10.1109/TAES.2017.2665258
    [8]
    LUO Ying, ZHANG Qun, QIU Chengwei, et al. Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2087–2098. doi: 10.1109/TGRS.2009.2034367
    [9]
    PERSICO A R, ILIOUDIS C V, CLEMENTE C, et al. Novel classification algorithm for ballistic target based on HRRP frame[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3168–3189. doi: 10.1109/TAES.2019.2905281
    [10]
    杨敏佳, 白雪茹, 刘士豪, 等. 基于高斯原型网络的小样本逆合成孔径雷达目标识别[J]. 电子与信息学报, 2022, 44(10): 3566–3573. doi: 10.11999/JEIT210724

    YANG Minjia, BAI Xueru, LIU Shihao, et al. Small-data inverse synthetic aperture radar object recognition based on Gaussian prototypical network[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3566–3573. doi: 10.11999/JEIT210724
    [11]
    BAI Xueru and PENG Xin. Radar image series denoising of space targets based on Gaussian process regression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4659–4669. doi: 10.1109/TGRS.2019.2892183
    [12]
    IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456.
    [13]
    GLOROT X, BORDES A, and BENGIO Y. Deep sparse rectifier neural networks[C]. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2011: 315–323.
    [14]
    张淑军, 张群, 李辉. 基于深度学习的手语识别综述[J]. 电子与信息学报, 2020, 42(4): 1021–1032. doi: 10.11999/JEIT190416

    ZHANG Shujun, ZHANG Qun, and LI Hui. Review of sign language recognition based on deep learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1021–1032. doi: 10.11999/JEIT190416
    [15]
    袁野, 贾克斌, 刘鹏宇. 基于深度卷积神经网络的多元医学信号多级上下文自编码器[J]. 电子与信息学报, 2020, 42(2): 371–378. doi: 10.11999/JEIT190135

    YUAN Ye, JIA Kebin, and LIU Pengyu. Multi-context autoencoders for multivariate medical signals based on deep convolutional neural networks[J]. Journal of Electronics &Information Technology, 2020, 42(2): 371–378. doi: 10.11999/JEIT190135
    [16]
    唐伦, 王恺, 张月, 等. 网络切片场景下基于分布式生成对抗网络的服务功能链异常检测[J]. 电子与信息学报, 2023, 45(1): 262–271. doi: 10.11999/JEIT211261

    TANG Lun, WANG Kai, ZHANG Yue, et al. Service function chain anomaly detection based on distributed generative adversarial network in network slicing scenario[J]. Journal of Electronics &Information Technology, 2023, 45(1): 262–271. doi: 10.11999/JEIT211261
    [17]
    TIAN Xudong, BAI Xueru, XUE Ruihang, et al. Fusion recognition of space targets with micromotion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3116–3125. doi: 10.1109/TAES.2022.3145303
    [18]
    ZHANG Yuanpeng, ZHANG Qun, KANG Le, et al. End-to-end recognition of similar space cone-cylinder targets based on complex-valued coordinate attention networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5106214. doi: 10.1109/TGRS.2021.3115624
    [19]
    BINGLE M, GARCIA-AGUILAR A, ILLENSEER F, et al. Overview of the latest electromagnetic solver features in FEKO suite 7.0[C]. Proceedings of the 2015 31st International Review of Progress in Applied Computational Electromagnetics, Williamsburg, USA, 2015: 1–2.
    [20]
    BAI Xueru and BAO Zheng. Imaging of rotation-symmetric space targets based on electromagnetic modeling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1680–1689. doi: 10.1109/TAES.2014.120772
    [21]
    LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541–551. doi: 10.1162/neco.1989.1.4.541
    [22]
    RUDER S. An overview of gradient descent optimization algorithms[EB/OL]. https://arxiv.org/abs/1609.04747, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (591) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return