Citation: | LI Yubai, SUN Xun. A Highly Robust Indoor Location Algorithm Using WiFi Channel State Information Based on Transfer Learning Reinforcement[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3657-3666. doi: 10.11999/JEIT221160 |
[1] |
SADRUDDIN H, MAHMOUD A, and ATIA M M. Enhancing body-mounted LiDAR SLAM using an IMU-based pedestrian dead reckoning (PDR) model[C]. The 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems, Springfield, USA, 2020: 901–904.
|
[2] |
BAI Lu, CIRAVEGNA F, BOND R, et al. A low cost indoor positioning system using bluetooth low energy[J]. IEEE Access, 2020, 8: 136858–136871. doi: 10.1109/ACCESS.2020.3012342
|
[3] |
CHÓLIZ J, EGUIZÁBAL M, HERNÁNDEZ-SOLANA Á, et al. Comparison of algorithms for UWB indoor location and tracking systems[C]. The 2011 IEEE 73rd Vehicular Technology Conference, Budapest, Hungary, 2011: 1–5.
|
[4] |
LIU Fen, LIU Jing, YIN Yuqing, et al. Survey on WiFi-based indoor positioning techniques[J]. IET Communications, 2020, 14(9): 1372–1383. doi: 10.1049/iet-com.2019.1059
|
[5] |
GAN Xingli, HUO Zhihui, SUN Lu, et al. An approach to improve the indoor positioning performance of pseudolite/UWB system with ambiguity resolution[J]. Journal of Sensors, 2022, 2022: 3962014. doi: 10.1155/2022/3962014
|
[6] |
JEDARI E, WU Zheng, RASHIDZADEH R, et al. Wi-Fi based indoor location positioning employing random forest classifier[C]. 2015 International conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015: 1–5.
|
[7] |
FANG S H and LIN T N. Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments[J]. IEEE Transactions on Neural Networks, 2008, 19(11): 1973–1978. doi: 10.1109/TNN.2008.2005494
|
[8] |
SHAO Wenhua, LUO Haiyong, ZHAO Fang, et al. Indoor positioning based on fingerprint-image and deep learning[J]. IEEE Access, 2018, 6: 74699–74712. doi: 10.1109/ACCESS.2018.2884193
|
[9] |
NESSA A, ADHIKARI B, HUSSAIN F, et al. A survey of machine learning for indoor positioning[J]. IEEE Access, 2020, 8: 214945–214965. doi: 10.1109/ACCESS.2020.3039271
|
[10] |
SEIDEL S Y and RAPPAPORT T S. 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(2): 207–217. doi: 10.1109/8.127405
|
[11] |
YE Hongyun, YANG Biao, LONG Zhiqiang, et al. A method of indoor positioning by signal fitting and PDDA algorithm using BLE AOA device[J]. IEEE Sensors Journal, 2022, 22(8): 7877–7887. doi: 10.1109/JSEN.2022.3141739
|
[12] |
WANG Mei, CHEN Zhao, ZHOU Zou, et al. Analysis of the applicability of dilution of precision in the base station configuration optimization of ultrawideband indoor TDOA positioning system[J]. IEEE Access, 2020, 8: 225076–225087. doi: 10.1109/ACCESS.2020.3045189
|
[13] |
WANG Jingjing and PARK J. An enhanced indoor positioning algorithm based on fingerprint using fine-grained CSI and RSSI measurements of IEEE 802.11n WLAN[J]. Sensors, 2021, 21(8): 2769. doi: 10.3390/s21082769
|
[14] |
GÖNÜLTAŞŞ E, LEI E, LANGERMAN J, et al. CSI-based multi-antenna and multi-point indoor positioning using probability fusion[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2162–2176. doi: 10.1109/TWC.2021.3109789
|
[15] |
AYABAKAN T and KERESTECIOĞLU F. RSSI-based indoor positioning via adaptive federated Kalman filter[J]. IEEE Sensors Journal, 2022, 22(6): 5302–5308. doi: 10.1109/JSEN.2021.3097249
|
[16] |
SILVA I, PENDÃO C, TORRES-SOSPEDRA J, et al. TrackInFactory: A tight coupling particle filter for industrial vehicle tracking in indoor environments[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(7): 4151–4162. doi: 10.1109/TSMC.2021.3091987
|
[17] |
IBRAHIM M, TORKI M, and ELNAINAY M. CNN based indoor localization using RSS time-series[C]. 2018 IEEE Symposium on Computers and Communications, Natal, Brazil, 2018: 1044–1049.
|
[18] |
EDEL M and KÖPPE E. Binarized-BLSTM-RNN based human activity recognition[C]. 2016 International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Spain, 2016: 1–7.
|
[19] |
GAO Zhihui, GAO Yunfan, WANG Sulei, et al. CRISLoc: Reconstructable CSI fingerprinting for indoor smartphone localization[J]. IEEE Internet of Things Journal, 2021, 8(5): 3422–3437. doi: 10.1109/JIOT.2020.3022573
|
[20] |
LI Danyang, XU Jingao, YANG Zheng, et al. Train once, locate anytime for anyone: Adversarial learning based wireless localization[C]. IEEE Conference on Computer Communications, Vancouver, Canada, 2021: 1–10.
|
[21] |
GHIFARY M, KLEIJN W B, and ZHANG Mengjie. Domain adaptive neural networks for object recognition[C]. The 13th Pacific Rim International Conference on Artificial Intelligence, Gold Coast, Australia, 2014: 898–904.
|
[22] |
LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 97–105.
|
[23] |
ZHU Yongchun, ZHUANG Fuzhen, WANG Jindong, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713–1722. doi: 10.1109/TNNLS.2020.2988928
|
[24] |
SHEORAN V, JOSHI S, and BHAYANI T R. Age and gender prediction using deep CNNs and transfer learning[C]. The 5th International Conference on Computer Vision and Image Processing, Prayagraj, India, 2020: 293–304.
|
[25] |
ANEJA S, ANEJA N, ABAS P E, et al. Transfer learning for cancer diagnosis in histopathological images[J]. arXiv: 2112.15523, 2021.
|
[26] |
HORRY M J, CHAKRABORTY S, PAUL M, et al. COVID-19 detection through transfer learning using multimodal imaging data[J]. IEEE Access, 2020, 8: 149808–149824. doi: 10.1109/ACCESS.2020.3016780
|
[27] |
PATHAK Y, SHUKLA P K, TIWARI A, et al. Deep transfer learning based classification model for COVID-19 disease[J]. IRBM, 2022, 43(2): 87–92. doi: 10.1016/j.irbm.2020.05.003
|
[28] |
ALEGRE PÉREZ J P, CELMA PUEYO S, and LÓPEZ B C. Automatic Gain Control[M]. New York: Springer, 2011.
|
[29] |
王迪也. 5G辅助的室内外融合定位技术研究[D]. [硕士论文], 电子科技大学, 2022.
WANG Diye. Research on 5G-assisted indoor and outdoor fusion positioning technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022.
|
[30] |
ZHANG Yong, QU Chen, and WANG Yujie. An indoor positioning method based on CSI by using features optimization mechanism with LSTM[J]. IEEE Sensors Journal, 2020, 20(9): 4868–4878. doi: 10.1109/JSEN.2020.2965590
|
[31] |
BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): e49–e57. doi: 10.1093/bioinformatics/btl242
|
[32] |
SCHULZ M, WEGEMER D, and HOLLICK M. Nexmon: The c-based firmware patching framework. 2017.
|
[33] |
GRINGOLI F, SCHULZ M, LINK J, et al. Free your CSI: A channel state information extraction platform for modern Wi-Fi chipsets[C]. The 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, Los Cabos, Mexico, 2019: 21–28.
|