Citation: | LIU Yunxia, BEI Guangxia, JIANG Zhongyun, MENG Qiang, SHI Huizhe. Adaptive Noise Reduction Algorithm for Chaotic Signals Based on Wavelet Packet Transform[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3676-3684. doi: 10.11999/JEIT221137 |
[1] |
黄丽莲, 姚文举, 项建弘, 等. 一种具有多对称同质吸引子的四维混沌系统的超级多稳定性研究[J]. 电子与信息学报, 2022, 44(1): 390–399. doi: 10.11999/JEIT201095
HUANG Lilian, YAO Wenju, XIANG Jianhong, et al. Extreme multi-stability of a four-dimensional chaotic system with infinitely many symmetric homogeneous attractors[J]. Journal of Electronics &Information Technology, 2022, 44(1): 390–399. doi: 10.11999/JEIT201095
|
[2] |
金江涛, 许子非, 李春, 等. 基于深度学习与混沌特征融合的滚动轴承故障诊断[J]. 控制理论与应用, 2022, 39(1): 109–116. doi: 10.7641/CTA.2021.10177
JIN Jiangtao, XU Zifei, LI Chun, et al. Rolling bearing fault diagnosis based on deep learning and chaotic feature fusion[J]. Control Theory &Applications, 2022, 39(1): 109–116. doi: 10.7641/CTA.2021.10177
|
[3] |
毛北行, 王东晓. 不确定分数阶高维混沌系统的自适应滑模同步[J]. 电子学报, 2021, 49(4): 775–780. doi: 10.12263/DZXB.20200316
MAO Beixing and WANG Dongxiao. Self-adaptive sliding mode synchronization of uncertain fractional-order high-dimension chaotic systems[J]. Acta Electronica Sinica, 2021, 49(4): 775–780. doi: 10.12263/DZXB.20200316
|
[4] |
郭业才, 姚文强. 基于信噪比分类网络的调制信号分类识别算法[J]. 电子与信息学报, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825
GUO Yecai and YAO Wenqiang. Modulation signal classification and recognition algorithm based on signal to noise ratio classification network[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825
|
[5] |
LIU Yunxia, LU Xiao, PENG Wei, et al. Compression and regularized optimization of modules stacked residual deep fuzzy system with application to time series prediction[J]. Information Sciences, 2022, 608: 551–577. doi: 10.1016/j.ins.2022.06.088
|
[6] |
KADAM S T, DHAIMODKER V M N, PATIL M M, et al. EIQ: EEG based IQ test using wavelet packet transform and hierarchical extreme learning machine[J]. Journal of Neuroscience Methods, 2019, 322: 71–82. doi: 10.1016/j.jneumeth.2019.04.008
|
[7] |
LOU Shuting, DENG Jiarui, and LYU Shanxiang. Chaotic signal denoising based on simplified convolutional denoising auto-encoder[J]. Chaos, Solitons & Fractals, 2022, 161: 112333. doi: 10.1016/j.chaos.2022.112333
|
[8] |
CHEN Yue and ZHANG Yu. Chaotic signal denoising using an improved wavelet thresholding algorithm[C]. 2021 International Conference on Communications, Information System and Computer Engineering, Beijing, China, 2021: 200–203.
|
[9] |
罗勇江, 杨腾飞, 赵冬. 色噪声下基于白化频谱重排鲁棒主成分分析的语音增强算法[J]. 电子与信息学报, 2021, 43(12): 3671–3679. doi: 10.11999/JEIT200594
LUO Yongjiang, YANG Tengfei, and ZHAO Dong. Speech enhancement algorithm based on robust principal component analysis with whitened spectrogram rearrangement in colored noise[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3671–3679. doi: 10.11999/JEIT200594
|
[10] |
郭文博, 林朗, 赵宏志, 等. 频谱共生干扰主动抑制技术研究[J]. 中国科学:信息科学, 2022, 52(10): 1915–1928. doi: 10.1360/SSI-2021-0160
GUO Wenbo, LIN Lang, ZHAO Hongzhi, et al. Research on the active cancellation technology of spectrum symbiotic interference[J]. Scientia Sinica (Informationis), 2022, 52(10): 1915–1928. doi: 10.1360/SSI-2021-0160
|
[11] |
MORADI M. Wavelet transform approach for denoising and decomposition of satellite-derived ocean color time-series: Selection of optimal mother wavelet[J]. Advances in Space Research, 2022, 69(7): 2724–2744. doi: 10.1016/j.asr.2022.01.023
|
[12] |
江莉, 尚文擎, 周军妮, 等. 一种用于地震信号分析的二阶挤压小波变换算法[J]. 电子与信息学报, 2021, 43(12): 3710–3717. doi: 10.11999/JEIT200753
JIANG Li, SHANG Wenqing, ZHOU Junni, et al. A second-order squeezed wavelet transform algorithm for seismic signal analysis[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3710–3717. doi: 10.11999/JEIT200753
|
[13] |
JIANG Feibo, DONG Li, DAI Qianwei, et al. Using wavelet packet denoising and ANFIS networks based on COSFLA optimization for electrical resistivity imaging inversion[J]. Fuzzy Sets and Systems, 2018, 337: 93–112. doi: 10.1016/j.fss.2017.07.009
|
[14] |
DASS R. Speckle noise reduction of ultrasound images using BFO cascaded with wiener filter and discrete wavelet transform in homomorphic region[J]. Procedia Computer Science, 2018, 132: 1543–1551. doi: 10.1016/j.procs.2018.05.118
|
[15] |
CUI Huimin, ZHAO Ruimei, and HOU Yanli. Improved threshold denoising method based on wavelet transform[J]. Physics Procedia, 2012, 33: 1354–1359. doi: 10.1016/j.phpro.2012.05.222
|
[16] |
GHANBARI Y and KARAMI-MOLLAEI M R. A new approach for speech enhancement based on the adaptive thresholding of the wavelet packets[J]. Speech Communication, 2006, 48(8): 927–940. doi: 10.1016/j.specom.2005.12.002
|
[17] |
LU Yibin, LI Min, WU Biteng, et al. Denoising of pulse wave signal by wavelet packet transform[C]. 2021 IEEE International Conference on Robotics and Biomimetics, Sanya, China, 2021: 232–236.
|
[18] |
ISLAM T, SHAHNAZ C, ZHU Weiping, et al. Rayleigh modeling of teager energy operated perceptual wavelet packet coefficients for enhancing noisy speech[J]. Speech Communication, 2017, 86: 64–74. doi: 10.1016/j.specom.2016.11.002
|
[19] |
ZAHHAD M A, AHMED S M, and ABBAS S N. Biometrics from heart sounds: Evaluation of a new approach based on wavelet packet cepstral features using HSCT-11 database[J]. Computers & Electrical Engineering, 2016, 53: 346–358. doi: 10.1016/j.compeleceng.2016.05.004
|
[20] |
DONG Wenyong and DING Hong. Full frequency de-noising method based on wavelet decomposition and noise-type detection[J]. Neurocomputing, 2016, 214: 902–909. doi: 10.1016/j.neucom.2016.06.072
|
[21] |
SWAMI P D, SHARMA R, JAIN A, et al. Speech enhancement by noise driven adaptation of perceptual scales and thresholds of continuous wavelet transform coefficients[J]. Speech Communication, 2015, 70: 1–12. doi: 10.1016/j.specom.2015.02.007
|