Citation: | ZHANG Xiaobei, TANG Chen, TU Ximei, LU Xiaogang, ZHANG Qi. 2D Compressed Sensing Algorithm Based on Adaptive Blocking and Joint Optimization Smooth l0 Norm[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4431-4439. doi: 10.11999/JEIT221097 |
[1] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
[2] |
覃亚丽, 梅济才, 任宏亮, 等. 基于高斯平滑压缩感知分数阶全变分算法的图像重构[J]. 电子与信息学报, 2021, 43(7): 2105–2112. doi: 10.11999/JEIT200376
QIN Yali, MEI Jicai, REN Hongliang, et al. Image reconstruction based on Gaussian smooth compressed sensing fractional order total variation algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(7): 2105–2112. doi: 10.11999/JEIT200376
|
[3] |
仲元红, 周宇杰, 张静, 等. 基于非局部先验的深度压缩感知图像重构网络[J]. 电子与信息学报, 2023, 45(2): 654–663. doi: 10.11999/JEIT211506
ZHONG Yuanhong, ZHOU Yujie, ZHANG Jing, et al. Deep compressive sensing image reconstruction network based on non-local prior[J]. Journal of Electronics &Information Technology, 2023, 45(2): 654–663. doi: 10.11999/JEIT211506
|
[4] |
方澄, 李慧娟, 路稳, 等. 基于形态学自适应分块的高分辨SAR多特征增强算法[J]. 系统工程与电子技术, 2022, 44(2): 470–479. doi: 10.12305/j.issn.1001-506X.2022.02.15
FANG Cheng, LI Huijuan, LU Wen, et al. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking[J]. Systems Engineering and Electronics, 2022, 44(2): 470–479. doi: 10.12305/j.issn.1001-506X.2022.02.15
|
[5] |
MUN S and FOWLER J E. Block compressed sensing of images using directional transforms[C]. 2009 16th IEEE International Conference on Image Processing, Cairo, Egypt, 2009: 3021–3024.
|
[6] |
何敬禄. 基于压缩感知的块稀疏信号重构和图像分块采样算法研究[D]. [硕士论文]. 广西大学, 2017.
HE Jinglu. Research on block-sparse signal reconstruction and image block sampling algorithm based on compressive sensing[D]. [Master dissertation], Guangxi University, 2017.
|
[7] |
MOHIMAN I H, BABAIE-ZADEH M, and JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed l 0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289–301. doi: 10.1109/TSP.2008.2007606
|
[8] |
孙娜, 刘继文, 肖东亮. 基于BFGS拟牛顿法的压缩感知SL0重构算法[J]. 电子与信息学报, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813
SUN Na, LIU Jiwen, and XIAO Dongliang. SL0 reconstruction algorithm for compressive sensing based on BFGS quasi newton method[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813
|
[9] |
CANDES E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979
|
[10] |
ZHANG Li and ZHOU Weijun. Spectral gradient projection method for solving nonlinear monotone equations[J]. Journal of Computational and Applied Mathematics, 2006, 196(2): 478–484. doi: 10.1016/j.cam.2005.10.002
|
[11] |
GU Yuejianan, PIAO Yan, and HUANG Yufu. Adaptive block compressed sensing algorithm based on integral imaging[C]. 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology, Shenzhen, China, 2020: 85–88.
|
[12] |
陈建, 苏凯雄, 杨秀芝, 等. 基于变分模型的块压缩感知重构算法[J]. 通信学报, 2016, 37(1): 100–109. doi: 10.11959/j.issn.1000-436x.2016011
CHEN Jian, SU Kaixiong, YANG Xiuzhi, et al. Reconstruction algorithm for block compressed sensing based on variation model[J]. Journal on Communications, 2016, 37(1): 100–109. doi: 10.11959/j.issn.1000-436x.2016011
|
[13] |
YE Guodong, PAN Chen, HUANG Xiaoling, et al. An efficient pixel-level chaotic image encryption algorithm[J]. Nonlinear Dynamics, 2018, 94(1): 745–756. doi: 10.1007/s11071-018-4391-y
|
[14] |
王玥, 周城, 熊承义, 等. 基于纹理自适应全变分滤波的图像分块压缩感知优化算法[J]. 计算机科学, 2016, 43(2): 307–310,315. doi: 10.11896/j.issn.1002-137X.2016.2.064
WANG Yue, ZHOU Cheng, XIONG Chengyi, et al. Enhanced block compressed sensing of images based on total variation using texture information[J]. Computer Science, 2016, 43(2): 307–310,315. doi: 10.11896/j.issn.1002-137X.2016.2.064
|
[15] |
YE Xinrong and ZHU Weiping. Sparse channel estimation of pulse-shaping multiple-input-multiple-output orthogonal frequency division multiplexing systems with an approximate gradient l 2–Sl0 reconstruction algorithm[J]. IET Communications, 2014, 8(7): 1124–1131. doi: 10.1049/iet-com.2013.0571
|
[16] |
FANG Xiaofeng, ZHANG Jiangshe, and LI Yingqi. Sparse signal reconstruction based on multiparameter approximation function with smoothed l0 norm[J]. Mathematical Problems in Engineering, 2014, 2014: 416542. doi: 10.1155/2014/416542
|
[17] |
GENG Juan, WANG Laisheng, FU Aimin, et al. A smoothed rank function algorithm based Hyperbolic Tangent function for matrix completion[C]. 2012 International Conference on Machine Learning and Cybernetics, Xi’an, China, 2012: 1333–1338.
|
[18] |
XIANG Jianhong, YUE Huihui, YIN Xiangjun, et al. A reweighted symmetric smoothed function approximating L0-norm regularized sparse reconstruction method[J]. Symmetry, 2018, 10(11): 583. doi: 10.3390/sym10110583
|
[19] |
张巍, 朱正为, 汪亮, 等. 一种A-HNSL0压缩感知SAR图像重建方法[J]. 电光与控制, 2020, 27(8): 28–32. doi: 10.3969/j.issn.1671-637X.2020.08.006
ZHANG Wei, ZHU Zhengwei, WANG Liang, et al. An A-HNSL0 compressed sensing based SAR image reconstruction method[J]. Electronics Optics &Control, 2020, 27(8): 28–32. doi: 10.3969/j.issn.1671-637X.2020.08.006
|
[20] |
PANT J K, LU Wusheng, and ANTONIOU A. Unconstrained regularized lp-norm based algorithm for the reconstruction of sparse signals[C]. 2011 IEEE International Symposium of Circuits and Systems, Rio de Janeiro, Brazil, 2011: 1740–1743.
|
[21] |
ZHAO Hui, YE Hao, and WANG Ruyan. The construction of measurement matrices based on block weighing matrix in compressed sensing[J]. Signal Processing, 2016, 123: 64–74. doi: 10.1016/j.sigpro.2015.12.016
|
[22] |
MAY R M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261(5560): 459–467. doi: 10.1038/261459a0
|
[23] |
ZHANG Bo, XIAO Di, ZHANG Zhenyu, et al. Compressing encrypted images by using 2D compressed sensing[C]. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems, Zhangjiajie, China, 2019: 1914–1919.
|
[24] |
WU Rui, FU Yusheng, and LEI Jianmin. Adaptive multiscale block compressed sensing algorithm based on total variation[C]. 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, Xi’an, China, 2018: 617–620.
|