Citation: | ZHANG Xia, YU Daojie, LIU Guangyi, BAI Yijie, WANG Yu. Countermeasures Against UAV Swarm Through Detection and Suppression of Fly Synchronization[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4317-4326. doi: 10.11999/JEIT221084 |
[1] |
吴涛, 冯伟强, 张昊. 无人机蜂群对海作战概念模型研究[J]. 指挥控制与仿真, 2022, 44(2): 7–11. doi: 10.3969/j.issn.1673-3819.2022.02.002
WU Tao, FENG Weiqiang, and ZHANG Hao. Research on concept model of UAV swarm naval attack operation[J]. Command Control &Simulation, 2022, 44(2): 7–11. doi: 10.3969/j.issn.1673-3819.2022.02.002
|
[2] |
钮伟, 黄佳沁, 缪礼锋. 无人机蜂群对海作战概念与关键技术研究[J]. 指挥控制与仿真, 2018, 40(1): 20–27. doi: 10.3969/j.issn.1673-3819.2018.01.004
NIU Wei, HUANG Jiaqin, and MIAO Lifeng. Research on the concept and key technologies of unmanned aerial vehicle swarm concerning naval attack[J]. Command Control &Simulation, 2018, 40(1): 20–27. doi: 10.3969/j.issn.1673-3819.2018.01.004
|
[3] |
WALTER B, SANNIER A, REINERS D, et al. UAV swarm control: Calculating digital pheromone fields with the GPU[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2006, 3(3): 167–176. doi: 10.1177/154851290600300304
|
[4] |
COXWORTH B. Gremlin drone recovered in mid-air for the first time[EB/OL]. https://newatlas.com/drones/gremlin-drone-recovery-mid-air/, 2021.
|
[5] |
REILLY B. Gremlins program successfully retrieves drone in mid-flight[J]. Inside the Air Force, 2021, 32(45): 1–32.
|
[6] |
张江南, 何勇, 潘绪超, 等. 无人机宽带高功率电磁脉冲易损性分析[J]. 弹箭与制导学报, 2020, 40(1): 110–115,120. doi: 10.15892/j.cnki.djzdxb.2020.01.022
ZHANG Jiangnan, HE Yong, PAN Xuchao, et al. Vulnerability analysis of UAV against mesoband electromagnetic pulse[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2020, 40(1): 110–115,120. doi: 10.15892/j.cnki.djzdxb.2020.01.022
|
[7] |
赵铜城, 余道杰, 周东方, 等. 无人机GPS接收机超宽谱电磁脉冲效应与试验分析[J]. 强激光与粒子束, 2019, 31(2): 023001. doi: 10.11884/HPLPB201931.180365
ZHAO Tongcheng, YU Daojie, ZHOU Dongfang, et al. Ultra-wide spectrum electromagnetic pulse effect and experimental analysis of UAV GPS receiver[J]. High Power Laser and Particle Beams, 2019, 31(2): 023001. doi: 10.11884/HPLPB201931.180365
|
[8] |
王统刚, 彭世蕤, 王广学. 高重频脉冲干扰对GPS接收机前端的干扰机理分析[J]. 空军预警学院学报, 2021, 35(4): 248–253. doi: 10.3969/j.issn.2095-5839.2021.04.004
WANG Tonggang, PENG Shiwei, and WANG Guangxue. Analysis on the interference mechanism of high repetition frequency pulse jamming GPS receiver front-end[J]. Journal of Air Force Early Warning Academy, 2021, 35(4): 248–253. doi: 10.3969/j.issn.2095-5839.2021.04.004
|
[9] |
杨王诗剑. 引领海战革命——浅析无人机"蜂群战术"[J]. 兵器知识, 2016(3): 1–4. doi: 10.19437/j.cnki.11-1470/tj.2016.03.016
YANG Wangshijian. Leading the naval war revolution - Analysis of UAV swarm tactics[J]. Ordnance Knowledge, 2016(3): 1–4. doi: 10.19437/j.cnki.11-1470/tj.2016.03.016
|
[10] |
付鑫, 赵然, 梁延峰, 等. 反无人机蜂群技术发展综述[J]. 中国电子科学研究院学报, 2022, 17(5): 421–428. doi: 10.3969/j.issn.1673-5692.2022.05.003
FU Xin, ZHAO Ran, LIANG Yanfeng, et al. Review on the development of anti UAV bee colony technology[J]. Journal of CAEIT, 2022, 17(5): 421–428. doi: 10.3969/j.issn.1673-5692.2022.05.003
|
[11] |
HWANG S P and KIM D H. A study on the establishment of anti-drone system for the protection of national important facilities[J]. The Society of Digital Policy and Management, 2020, 18(11): 247–257. doi: 10.14400/JDC.2020.18.11.247
|
[12] |
介冲, 苗壮, 叶婷婷. 美军现役反无人机系统发展研究[J]. 飞航导弹, 2020(12): 36–42. doi: 10.16338/j.issn.1009-1319.20200235
JIE Chong, MIAO Zhuang, and YE Tingting. Research on the development of active anti UAV system of US army[J]. Aerospace Technology, 2020(12): 36–42. doi: 10.16338/j.issn.1009-1319.20200235
|
[13] |
邱华鑫, 段海滨. 从鸟群群集飞行到无人机自主集群编队[J]. 工程科学学报, 2017, 39(3): 317–322. doi: 10.13374/j.issn2095-9389.2017.03.001
QIU Huaxin and DUAN Haibin. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation[J]. Chinese Journal of Engineering, 2017, 39(3): 317–322. doi: 10.13374/j.issn2095-9389.2017.03.001
|
[14] |
赵海涛, 高士顺, 王海军, 等. 无人机自主通信和组网能力评估方法[J]. 通信学报, 2020, 41(8): 87–98. doi: 10.11959/j.issn.1000-436x.2020143
ZHAO Haitao, GAO Shishun, WANG Haijun, et al. Evaluation method for autonomous communication and networking capability of UAV[J]. Journal on Communications, 2020, 41(8): 87–98. doi: 10.11959/j.issn.1000-436x.2020143
|
[15] |
段海滨, 邱华鑫, 范彦铭. 基于捕食逃逸鸽群优化的无人机紧密编队协同控制[J]. 中国科学:技术科学, 2015, 45(6): 559–572. doi: 10.1360/N092015-00125
DUAN Haibin, QIU Huaxin, and FAN Yanming. Unmanned aerial vehicle close formation cooperative control based on predatory escaping pigeon-inspired optimization[J]. Scientia Sinica Technologica, 2015, 45(6): 559–572. doi: 10.1360/N092015-00125
|
[16] |
柳强, 何明, 刘锦涛, 等. 无人机"蜂群"的蜂拥涌现行为识别与抑制机理[J]. 电子学报, 2019, 47(2): 374–381. doi: 10.3969/j.issn.0372-2112.2019.02.017
LIU Qiang, HE Ming, LIU Jintao, et al. A mechanism for identifying and suppressing the emergent flocking behaviors of UAV swarms[J]. Acta Electronica Sinica, 2019, 47(2): 374–381. doi: 10.3969/j.issn.0372-2112.2019.02.017
|
[17] |
LIU Qiang, HE Ming, XU Daqin, et al. A mechanism for recognizing and suppressing the emergent behavior of UAV swarm[J]. Mathematical Problems in Engineering, 2018, 2018: 6734923. doi: 10.1155/2018/6734923
|
[18] |
屈强, 何新华, 刘中晅. 系统涌现的要素和动力学机制[J]. 系统科学学报, 2017, 25(3): 25–29.
QU Qiang, HE Xinhua, and LIU Zhongxuan. Essential factors and dynamic mechanism of the system emergence[J]. Chinese Journal of Systems Science, 2017, 25(3): 25–29.
|
[19] |
詹姆斯·P. G. 斯特本兹, 卡米什·纳莫杜里, 塞尔日·肖梅特, 等, 刘亚威, 闫娟, 译. 无人机网络与通信[M]. 北京: 机械工业出版社, 2019.
STERBENZ J P G, NAMUDURI K, CHAUMETTE S, et al, LIU Yawei, YAN Juan, translation. UAV Networks and Communications[M]. Beijing: China Machine Press, 2019.
|
[20] |
VICSEK T, CZIRÓK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6): 1226–1229. doi: 10.1103/PhysRevLett.75.1226
|
[21] |
程建, 张明清, 唐俊, 等. 基于信息熵的复杂系统涌现量化方法研究[J]. 信息工程大学学报, 2014, 15(3): 270–274. doi: 10.3969/j.issn.1671-0673.2014.03.003
CHENG Jian, ZHANG Mingqing, TANG Jun, et al. Emergence quantitative analysis of complex adaptive systems based on Shannon's information entropy[J]. Journal of Information Engineering University, 2014, 15(3): 270–274. doi: 10.3969/j.issn.1671-0673.2014.03.003
|
[22] |
屈强, 何新华, 陆皖麟. 基于f-散度的复杂系统涌现度量方法[J]. 装甲兵工程学院学报, 2017, 31(3): 106–110. doi: 10.3969/j.issn.1672-1497.2017.03.020
QU Qiang, HE Xinhua, and LU Wanlin. A new approach to measure the emergence of complex system based on f-divergence[J]. Journal of Academy of Armored Force Engineering, 2017, 31(3): 106–110. doi: 10.3969/j.issn.1672-1497.2017.03.020
|
[23] |
HOPCROFT J E and TARJAN R E. Dividing a graph into triconnected components[J]. SIAM Journal on Computing, 1973, 2(3): 135–158. doi: 10.1137/0202012
|
[24] |
朱艮春, 魏光辉, 潘晓东, 等. 典型通信电台带内干扰辐射效应研究[J]. 微波学报, 2011, 27(6): 93–96. doi: 10.14183/j.cnki.1005-6122.2011.06.005
ZHU Genchun, WEI Guanghui, PAN Xiaodong, et al. Effects research of typical communication radio radiated by intraband interference[J]. Journal of Microwaves, 2011, 27(6): 93–96. doi: 10.14183/j.cnki.1005-6122.2011.06.005
|
[25] |
李新峰, 郝晓军, 韩慧, 等. 基于误码率的通信系统电磁干扰效应研究[J]. 微波学报, 2017, 33(1): 71–76. doi: 10.14183/j.cnki.1005-6122.201701016
LI Xinfeng, HAO Xiaojun, HAN Hui, et al. Electromagnetic interference effect research of communication system based on SER[J]. Journal of Microwaves, 2017, 33(1): 71–76. doi: 10.14183/j.cnki.1005-6122.201701016
|
[26] |
GOLDSMITH A, 杨鸿文, 李卫东, 郭文彬, 等译. 无线通信[M]. 北京: 人民邮电出版社, 2007.
GOLDSMITH A, YANG Hongwen, LI Weidong, GUO Wenbin, et al. translation. Wireless Communications[M]. Beijing: Posts & Telecom Press, 2007.
|