Advanced Search
Volume 45 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
ZHANG Xia, YU Daojie, LIU Guangyi, BAI Yijie, WANG Yu. Countermeasures Against UAV Swarm Through Detection and Suppression of Fly Synchronization[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4317-4326. doi: 10.11999/JEIT221084
Citation: ZHANG Xia, YU Daojie, LIU Guangyi, BAI Yijie, WANG Yu. Countermeasures Against UAV Swarm Through Detection and Suppression of Fly Synchronization[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4317-4326. doi: 10.11999/JEIT221084

Countermeasures Against UAV Swarm Through Detection and Suppression of Fly Synchronization

doi: 10.11999/JEIT221084
  • Received Date: 2022-08-16
  • Rev Recd Date: 2022-10-15
  • Available Online: 2023-04-06
  • Publish Date: 2023-12-26
  • This paper studies the detection and suppression mechanisms of fly synchronization of Unmanned Aerial Vehicle (UAV) swarm. Fly synchronization process is viewed as emergence in the complex system. A detection algorithm is proposed based on emergence identification with double thresholds. By simultaneously monitoring the entropy difference of flight synchronization process and network connectivity of the target system, the misjudgment of existing algorithms caused by ignoring the network status is overcomed, and the occurrence, achievement, or failure of fly synchronization is accurately identified, which provides a solid prerequisite for the timing control of the suppression mechanism. In-band radio interference behavior is designed under the constraint of average power. The interference behavior modeled from the perspective of degrading the target system’s communication capacity and the effect is analyzed through simulations. It is found that low-intensity continuous interference can effectively delay the fly synchronization process and prolong the time of that. What’s more, it has better concealment. Medium-intensity continuous interference can rapidly stop that process. Based on the above perception, for the first time, countermeasures for the UAV swarm’s fly synchronization are designed according to different operational intentions of delay and disruption. Simulation results show the effectiveness of the countermeasures.
  • loading
  • [1]
    吴涛, 冯伟强, 张昊. 无人机蜂群对海作战概念模型研究[J]. 指挥控制与仿真, 2022, 44(2): 7–11. doi: 10.3969/j.issn.1673-3819.2022.02.002

    WU Tao, FENG Weiqiang, and ZHANG Hao. Research on concept model of UAV swarm naval attack operation[J]. Command Control &Simulation, 2022, 44(2): 7–11. doi: 10.3969/j.issn.1673-3819.2022.02.002
    [2]
    钮伟, 黄佳沁, 缪礼锋. 无人机蜂群对海作战概念与关键技术研究[J]. 指挥控制与仿真, 2018, 40(1): 20–27. doi: 10.3969/j.issn.1673-3819.2018.01.004

    NIU Wei, HUANG Jiaqin, and MIAO Lifeng. Research on the concept and key technologies of unmanned aerial vehicle swarm concerning naval attack[J]. Command Control &Simulation, 2018, 40(1): 20–27. doi: 10.3969/j.issn.1673-3819.2018.01.004
    [3]
    WALTER B, SANNIER A, REINERS D, et al. UAV swarm control: Calculating digital pheromone fields with the GPU[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2006, 3(3): 167–176. doi: 10.1177/154851290600300304
    [4]
    COXWORTH B. Gremlin drone recovered in mid-air for the first time[EB/OL]. https://newatlas.com/drones/gremlin-drone-recovery-mid-air/, 2021.
    [5]
    REILLY B. Gremlins program successfully retrieves drone in mid-flight[J]. Inside the Air Force, 2021, 32(45): 1–32.
    [6]
    张江南, 何勇, 潘绪超, 等. 无人机宽带高功率电磁脉冲易损性分析[J]. 弹箭与制导学报, 2020, 40(1): 110–115,120. doi: 10.15892/j.cnki.djzdxb.2020.01.022

    ZHANG Jiangnan, HE Yong, PAN Xuchao, et al. Vulnerability analysis of UAV against mesoband electromagnetic pulse[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2020, 40(1): 110–115,120. doi: 10.15892/j.cnki.djzdxb.2020.01.022
    [7]
    赵铜城, 余道杰, 周东方, 等. 无人机GPS接收机超宽谱电磁脉冲效应与试验分析[J]. 强激光与粒子束, 2019, 31(2): 023001. doi: 10.11884/HPLPB201931.180365

    ZHAO Tongcheng, YU Daojie, ZHOU Dongfang, et al. Ultra-wide spectrum electromagnetic pulse effect and experimental analysis of UAV GPS receiver[J]. High Power Laser and Particle Beams, 2019, 31(2): 023001. doi: 10.11884/HPLPB201931.180365
    [8]
    王统刚, 彭世蕤, 王广学. 高重频脉冲干扰对GPS接收机前端的干扰机理分析[J]. 空军预警学院学报, 2021, 35(4): 248–253. doi: 10.3969/j.issn.2095-5839.2021.04.004

    WANG Tonggang, PENG Shiwei, and WANG Guangxue. Analysis on the interference mechanism of high repetition frequency pulse jamming GPS receiver front-end[J]. Journal of Air Force Early Warning Academy, 2021, 35(4): 248–253. doi: 10.3969/j.issn.2095-5839.2021.04.004
    [9]
    杨王诗剑. 引领海战革命——浅析无人机"蜂群战术"[J]. 兵器知识, 2016(3): 1–4. doi: 10.19437/j.cnki.11-1470/tj.2016.03.016

    YANG Wangshijian. Leading the naval war revolution - Analysis of UAV swarm tactics[J]. Ordnance Knowledge, 2016(3): 1–4. doi: 10.19437/j.cnki.11-1470/tj.2016.03.016
    [10]
    付鑫, 赵然, 梁延峰, 等. 反无人机蜂群技术发展综述[J]. 中国电子科学研究院学报, 2022, 17(5): 421–428. doi: 10.3969/j.issn.1673-5692.2022.05.003

    FU Xin, ZHAO Ran, LIANG Yanfeng, et al. Review on the development of anti UAV bee colony technology[J]. Journal of CAEIT, 2022, 17(5): 421–428. doi: 10.3969/j.issn.1673-5692.2022.05.003
    [11]
    HWANG S P and KIM D H. A study on the establishment of anti-drone system for the protection of national important facilities[J]. The Society of Digital Policy and Management, 2020, 18(11): 247–257. doi: 10.14400/JDC.2020.18.11.247
    [12]
    介冲, 苗壮, 叶婷婷. 美军现役反无人机系统发展研究[J]. 飞航导弹, 2020(12): 36–42. doi: 10.16338/j.issn.1009-1319.20200235

    JIE Chong, MIAO Zhuang, and YE Tingting. Research on the development of active anti UAV system of US army[J]. Aerospace Technology, 2020(12): 36–42. doi: 10.16338/j.issn.1009-1319.20200235
    [13]
    邱华鑫, 段海滨. 从鸟群群集飞行到无人机自主集群编队[J]. 工程科学学报, 2017, 39(3): 317–322. doi: 10.13374/j.issn2095-9389.2017.03.001

    QIU Huaxin and DUAN Haibin. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation[J]. Chinese Journal of Engineering, 2017, 39(3): 317–322. doi: 10.13374/j.issn2095-9389.2017.03.001
    [14]
    赵海涛, 高士顺, 王海军, 等. 无人机自主通信和组网能力评估方法[J]. 通信学报, 2020, 41(8): 87–98. doi: 10.11959/j.issn.1000-436x.2020143

    ZHAO Haitao, GAO Shishun, WANG Haijun, et al. Evaluation method for autonomous communication and networking capability of UAV[J]. Journal on Communications, 2020, 41(8): 87–98. doi: 10.11959/j.issn.1000-436x.2020143
    [15]
    段海滨, 邱华鑫, 范彦铭. 基于捕食逃逸鸽群优化的无人机紧密编队协同控制[J]. 中国科学:技术科学, 2015, 45(6): 559–572. doi: 10.1360/N092015-00125

    DUAN Haibin, QIU Huaxin, and FAN Yanming. Unmanned aerial vehicle close formation cooperative control based on predatory escaping pigeon-inspired optimization[J]. Scientia Sinica Technologica, 2015, 45(6): 559–572. doi: 10.1360/N092015-00125
    [16]
    柳强, 何明, 刘锦涛, 等. 无人机"蜂群"的蜂拥涌现行为识别与抑制机理[J]. 电子学报, 2019, 47(2): 374–381. doi: 10.3969/j.issn.0372-2112.2019.02.017

    LIU Qiang, HE Ming, LIU Jintao, et al. A mechanism for identifying and suppressing the emergent flocking behaviors of UAV swarms[J]. Acta Electronica Sinica, 2019, 47(2): 374–381. doi: 10.3969/j.issn.0372-2112.2019.02.017
    [17]
    LIU Qiang, HE Ming, XU Daqin, et al. A mechanism for recognizing and suppressing the emergent behavior of UAV swarm[J]. Mathematical Problems in Engineering, 2018, 2018: 6734923. doi: 10.1155/2018/6734923
    [18]
    屈强, 何新华, 刘中晅. 系统涌现的要素和动力学机制[J]. 系统科学学报, 2017, 25(3): 25–29.

    QU Qiang, HE Xinhua, and LIU Zhongxuan. Essential factors and dynamic mechanism of the system emergence[J]. Chinese Journal of Systems Science, 2017, 25(3): 25–29.
    [19]
    詹姆斯·P. G. 斯特本兹, 卡米什·纳莫杜里, 塞尔日·肖梅特, 等, 刘亚威, 闫娟, 译. 无人机网络与通信[M]. 北京: 机械工业出版社, 2019.

    STERBENZ J P G, NAMUDURI K, CHAUMETTE S, et al, LIU Yawei, YAN Juan, translation. UAV Networks and Communications[M]. Beijing: China Machine Press, 2019.
    [20]
    VICSEK T, CZIRÓK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6): 1226–1229. doi: 10.1103/PhysRevLett.75.1226
    [21]
    程建, 张明清, 唐俊, 等. 基于信息熵的复杂系统涌现量化方法研究[J]. 信息工程大学学报, 2014, 15(3): 270–274. doi: 10.3969/j.issn.1671-0673.2014.03.003

    CHENG Jian, ZHANG Mingqing, TANG Jun, et al. Emergence quantitative analysis of complex adaptive systems based on Shannon's information entropy[J]. Journal of Information Engineering University, 2014, 15(3): 270–274. doi: 10.3969/j.issn.1671-0673.2014.03.003
    [22]
    屈强, 何新华, 陆皖麟. 基于f-散度的复杂系统涌现度量方法[J]. 装甲兵工程学院学报, 2017, 31(3): 106–110. doi: 10.3969/j.issn.1672-1497.2017.03.020

    QU Qiang, HE Xinhua, and LU Wanlin. A new approach to measure the emergence of complex system based on f-divergence[J]. Journal of Academy of Armored Force Engineering, 2017, 31(3): 106–110. doi: 10.3969/j.issn.1672-1497.2017.03.020
    [23]
    HOPCROFT J E and TARJAN R E. Dividing a graph into triconnected components[J]. SIAM Journal on Computing, 1973, 2(3): 135–158. doi: 10.1137/0202012
    [24]
    朱艮春, 魏光辉, 潘晓东, 等. 典型通信电台带内干扰辐射效应研究[J]. 微波学报, 2011, 27(6): 93–96. doi: 10.14183/j.cnki.1005-6122.2011.06.005

    ZHU Genchun, WEI Guanghui, PAN Xiaodong, et al. Effects research of typical communication radio radiated by intraband interference[J]. Journal of Microwaves, 2011, 27(6): 93–96. doi: 10.14183/j.cnki.1005-6122.2011.06.005
    [25]
    李新峰, 郝晓军, 韩慧, 等. 基于误码率的通信系统电磁干扰效应研究[J]. 微波学报, 2017, 33(1): 71–76. doi: 10.14183/j.cnki.1005-6122.201701016

    LI Xinfeng, HAO Xiaojun, HAN Hui, et al. Electromagnetic interference effect research of communication system based on SER[J]. Journal of Microwaves, 2017, 33(1): 71–76. doi: 10.14183/j.cnki.1005-6122.201701016
    [26]
    GOLDSMITH A, 杨鸿文, 李卫东, 郭文彬, 等译. 无线通信[M]. 北京: 人民邮电出版社, 2007.

    GOLDSMITH A, YANG Hongwen, LI Weidong, GUO Wenbin, et al. translation. Wireless Communications[M]. Beijing: Posts & Telecom Press, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (541) PDF downloads(136) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return