Citation: | LEI Wentai, MAO Lingqing, PANG Zebang, REN Qiang, WANG Chenghao, SUI Hao, XIN Changle. DR-GAN: An Unsupervised Learning Approach to Clutter Suppression for Ground Penetrating Radar[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3776-3785. doi: 10.11999/JEIT221072 |
[1] |
乔尔, 雷文太, 童孝忠, 周肠, 等译. 探地雷达理论与应用[M]. 北京: 电子工业出版社, 2011.
JOL H M, LEI Wentai, TONG Xiaozhong, ZHOU Yang, et al. translation. Ground Penetrating Radar: Theory and Applications[M]. Beijing: Publishing House of Electronics Industry, 2011.
|
[2] |
刘澜波, 钱荣毅. 探地雷达: 浅表地球物理科学技术中的重要工具[J]. 地球物理学报, 2015, 58(8): 2606–2617. doi: 10.6038/cjg20150802
LIU Lanbo and QIAN Rongyi. Ground penetrating radar: A critical tool in near-surface geophysics[J]. Chinese Journal of Geophysics, 2015, 58(8): 2606–2617. doi: 10.6038/cjg20150802
|
[3] |
TONG Zheng, YUAN Dongdong, GAO Jie, et al. Pavement-distress detection using ground-penetrating radar and network in networks[J]. Construction and Building Materials, 2020, 233: 117352. doi: 10.1016/j.conbuildmat.2019.117352
|
[4] |
刘海, 黄肇刚, 岳云鹏, 等. 地下管线渗漏环境下探地雷达信号特征分析[J]. 电子与信息学报, 2022, 44(4): 1257–1264. doi: 10.11999/JEIT211213
LIU Hai, HUANG Zhaogang, YUE Yunpeng, et al. Characteristics analysis of ground penetrating radar signals for groundwater pipe leakage environment[J]. Journal of Electronics &Information Technology, 2022, 44(4): 1257–1264. doi: 10.11999/JEIT211213
|
[5] |
SOLIMENE R, CUCCARO A, DELL' AVERSANO A, et al. Ground clutter removal in GPR surveys[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3): 792–798. doi: 10.1109/JSTARS.2013.2287016
|
[6] |
ABUJARAD F, NADIM G, and OMAR A. Clutter reduction and detection of landmine objects in ground penetrating radar data using Singular Value Decomposition (SVD)[C]. The 3rd International Workshop on Advanced Ground Penetrating Radar, Delft, Netherlands, 2005: 37–41.
|
[7] |
CHEN Gaoxiang, FU Liyun, CHEN Kanfu, et al. Adaptive ground clutter reduction in ground-penetrating radar data based on principal component analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3271–3282. doi: 10.1109/TGRS.2018.2882912
|
[8] |
ABUJARAD F and OMAR A. Comparison of independent component analysis (ICA) algorithms for GPR detection of non-metallic land mines[J]. SPIE, 2006, 6365: 636516.
|
[9] |
KUMLU D and ERER I. Performance evaluation of NMF methods with different divergence metrics for landmine detection in GPR[J]. SPIE, 2018, 10794: 107940I.
|
[10] |
TEMLIOGLU E and ERER I. Clutter removal in ground-penetrating radar images using morphological component analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1802–1806. doi: 10.1109/LGRS.2016.2612582
|
[11] |
KUMLU D and ERER I. Improved clutter removal in GPR by robust nonnegative matrix factorization[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 958–962. doi: 10.1109/LGRS.2019.2937749
|
[12] |
SONG Xiaosong, XIANG Deliang, ZHOU Kai, et al. Improving RPCA-based clutter suppression in GPR detection of antipersonnel mines[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1338–1342. doi: 10.1109/LGRS.2017.2711251
|
[13] |
NI Zhikang, YE Shengbo, SHI Cheng, et al. Clutter suppression in GPR B-scan images using robust autoencoder[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3500705. doi: 10.1109/LGRS.2020.3026007
|
[14] |
ZHOU Huilin, WANG Yi, LIU Qiegen, et al. RNMF-guided deep network for signal separation of GPR without labeled data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3507705. doi: 10.1109/LGRS.2021.3099161
|
[15] |
GENG Jianrong, HE Juan, YE Hongxia, et al. A clutter suppression method based on LSTM network for ground penetrating radar[J]. Applied Sciences, 2022, 12(13): 6457. doi: 10.3390/app12136457
|
[16] |
TEMLIOGLU E and ERER I. A novel convolutional autoencoder-based clutter removal method for buried threat detection in ground-penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5103313. doi: 10.1109/TGRS.2021.3098122
|
[17] |
NI Zhikang, SHI Cheng, PAN Jun, et al. Declutter-GAN: GPR B-scan data clutter removal using conditional generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4023105. doi: 10.1109/LGRS.2022.3159788
|
[18] |
HUANG Yongqiang, XIA Wenjun, LU Zexin, et al. Noise-powered disentangled representation for unsupervised speckle reduction of optical coherence tomography images[J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2600–2614. doi: 10.1109/TMI.2020.3045207
|
[19] |
LEE H Y, TSENG H Y, HUANG Jiabin, et al. Diverse image-to-image translation via disentangled representations[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 36–52.
|
[20] |
ABROL V, SHARMA P, and PATRA A. Improving generative modelling in VAEs using multimodal prior[J]. IEEE Transactions on Multimedia, 2021, 23: 2153–2161. doi: 10.1109/TMM.2020.3008053
|
[21] |
ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5967–5976.
|
[22] |
WARREN C, GIANNOPOULOS A, and GIANNAKIS I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020
|