Citation: | TAO Tangfei, LIU Tianyu. A Survey of Sign Language Recognition Technology Based on Sign Language Expression Content and Expression Characteristics[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3439-3457. doi: 10.11999/JEIT221051 |
[1] |
MURRAY J. World federation of the deaf[EB/OL]. http://wfdeaf.org/our-work/, 2020.
|
[2] |
贾湧强. 我国语言障碍康复需求超3000万人[EB/OL]. https://m.btime.com/item/router?gid=40ea0atodav8fk8lcqahek43ilu, 2020.
|
[3] |
网信郑州. 「健康生活 有你有我」在中国, 2780万人的生活被按下了静音键······[EB/OL]. https://baijiahao.baidu.com/s?id=1678969855122384979&8;wfr=spider&;for=pc, 2020.
|
[4] |
周宇. 中国手语识别中自适应问题的研究[D]. [博士论文], 哈尔滨工业大学, 2009.
ZHOU Y. Research on signer adaptation in Chinese sign language recognition[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2009.
|
[5] |
GAO Wen, FANG Gaolin, ZHAO Debin, et al. A Chinese sign language recognition system based on SOFM/SRN/HMM[J]. Pattern Recognition, 2004, 37(12): 2389–2402. doi: 10.1016/S0031-3203(04)00165-7
|
[6] |
MAZUMDAR D, TALUKDAR A K, and SARMA K K. Gloved and free hand tracking based hand gesture recognition[C]. The 1st International Conference on Emerging Trends and Applications in Computer Science, Shillong, India, 2013: 197–202.
|
[7] |
WANG R Y and POPOVIĆ J. Real-time hand-tracking with a color glove[J]. ACM Transactions on Graphics, 2009, 28(3): 63. doi: 10.1145/1531326.1531369
|
[8] |
HUANG Jie, ZHOU Wengang, LI Houqiang, et al. Sign language recognition using real-sense[C]. 2015 IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, China, 2015: 166–170.
|
[9] |
HUANG Jie, ZHOU Wengang, ZHANG Qilin, et al. Video-based sign language recognition without temporal segmentation[C]. The Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, Louisiana, USA, 2018: 275.
|
[10] |
MITTAL A, KUMAR P, ROY P P, et al. A modified LSTM model for continuous sign language recognition using leap motion[J]. IEEE Sensors Journal, 2019, 19(16): 7056–7063. doi: 10.1109/JSEN.2019.2909837
|
[11] |
WANG Hanjie, CHAI Xiujuan, and CHEN Xilin. A novel sign language recognition framework using hierarchical Grassmann covariance matrix[J]. IEEE Transactions on Multimedia, 2019, 21(11): 2806–2814. doi: 10.1109/TMM.2019.2915032
|
[12] |
王骐, 陈熙霖, 王春立, 等. 一种可处理数据缺失的视角无关手语识别方法[J]. 计算机学报, 2009, 32(5): 953–961. doi: 10.3724/SP.J.1016.2009.00953
WANG Qi, CHEN Xilin, WANG Chunli, et al. A data-deficiency-tolerated method for viewpoint independent sign language recognition[J]. Chinese Journal of Computers, 2009, 32(5): 953–961. doi: 10.3724/SP.J.1016.2009.00953
|
[13] |
LIANG R H and OUHYOUNG M. A real-time continuous gesture recognition system for sign language[C]. The 3rd IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 1998: 558–567.
|
[14] |
YU S H, HUANG C L, HSU S C, et al. Vision-based continuous sign language recognition using product HMM[C]. The 1st Asian Conference on Pattern Recognition, Beijing, China, 2011: 510–514.
|
[15] |
MADADI M, BERTICHE H, and ESCALERA S. SMPLR: Deep learning based SMPL reverse for 3D human pose and shape recovery[J]. Pattern Recognition, 2020, 106: 107472. doi: 10.1016/j.patcog.2020.107472
|
[16] |
CELEBI S, AYDIN A S, TEMIZ T T, et al. Gesture recognition using skeleton data with weighted dynamic time warping[C]. The International Conference on Computer Vision Theory and Applications, Barcelona, Spain, 2013: 620–625.
|
[17] |
SUN Chao, ZHANG Tianzhu, and XU Changsheng. Latent support vector machine modeling for sign language recognition with Kinect[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(2): 20. doi: 10.1145/2629481
|
[18] |
张淑军, 张群, 李辉. 基于深度学习的手语识别综述[J]. 电子与信息学报, 2020, 42(4): 1021–1032. doi: 10.11999/JEIT190416
ZHANG Shujun, ZHANG Qun, and LI Hui. Review of sign language recognition based on deep learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1021–1032. doi: 10.11999/JEIT190416
|
[19] |
米娜瓦尔·阿不拉, 阿里甫·库尔班, 解启娜, 等. 手语识别方法与技术综述[J]. 计算机工程与应用, 2021, 57(18): 1–12. doi: 10.3778/j.issn.1002-8331.2104-0220
MINAWAER·ABULA, ALIFU·KUERBAN, XIE Qina, et al. Review of sign language recognition methods and techniques[J]. Computer Engineering and Applications, 2021, 57(18): 1–12. doi: 10.3778/j.issn.1002-8331.2104-0220
|
[20] |
郭丹, 唐申庚, 洪日昌, 等. 手语识别、翻译与生成综述[J]. 计算机科学, 2021, 48(3): 60–70. doi: 10.11896/jsjkx.210100227
GUO Dan, TANG Shengeng, HONG Richang, et al. Review of sign language recognition, translation and generation[J]. Computer Science, 2021, 48(3): 60–70. doi: 10.11896/jsjkx.210100227
|
[21] |
DE AMORIM C C and ZANCHETTIN C. ASL-Skeleton3D and ASL-phono: Two novel datasets for the American sign language[J]. arXiv: 2201.02065, 2022.
|
[22] |
CHEN Chen, ZHANG Baochang, HOU Zhenjie, et al. Action recognition from depth sequences using weighted fusion of 2D and 3D auto-correlation of gradients features[J]. Multimedia Tools and Applications, 2017, 76(3): 4651–4669. doi: 10.1007/s11042-016-3284-7
|
[23] |
CHAI X, WANG H, and CHEN X. The DEVISIGN large vocabulary of Chinese sign language database and baseline evaluations[R]. Technical Report VIPL-TR-14-SLR-001, 2014.
|
[24] |
WANG Fei, DU Yuxuan, WANG Guorui, et al. (2+1) D-SLR: An efficient network for video sign language recognition[J]. Neural Computing and Applications, 2022, 34(3): 2413–2423. doi: 10.1007/s00521-021-06467-9
|
[25] |
HU Hezhen, ZHOU Wengang, PU Junfu, et al. Global-local enhancement network for NMF-aware sign language recognition[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2021, 17(3): 80. doi: 10.1145/3436754
|
[26] |
EFTHIMIOU E and FOTINEA S E. GSLC: Creation and annotation of a Greek sign language corpus for HCI[C]. The 4th International Conference on Universal Access in Human-Computer Interaction, Beijing, China, 2007: 657–666.
|
[27] |
ADALOGLOU N, CHATZIS T, PAPASTRATIS I, et al. A comprehensive study on sign language recognition methods[J]. arXiv: 2007.12530, 2020.
|
[28] |
NEIDLE C, THANGALI A, and SCLAROFF S. Challenges in development of the American sign language lexicon video dataset (ASLLVD) corpus[C]. The 5th Workshop on the Representation and Processing of Sign Languages: Interactions Between Corpus and Lexicon, Istanbul, Turkey, 2012: 1–8.
|
[29] |
COOPER H, ONG E J, PUGEAULT N, et al. Sign language recognition using sub-units[J]. The Journal of Machine Learning Research, 2012, 13(1): 2205–2231.
|
[30] |
OSZUST M and WYSOCKI M. Polish sign language words recognition with Kinect[C]. The 6th International Conference on Human System Interactions, Sopot, Poland, 2013: 219–226.
|
[31] |
ESCALERA S, BARÓ X, GONZÀLEZ J, et al. ChaLearn looking at people challenge 2014: Dataset and results[C]. The European Conference on Computer Vision, Zurich, Switzerland, 2015: 459–473.
|
[32] |
RONCHETTI F, QUIROGA F, ESTREBOU C A, et al. LSA64: An Argentinian sign language dataset[C]. The XXII Congreso Argentino de Ciencias de la Computación, Córdoba, Argentina, 2016: 794–803.
|
[33] |
ADALOGLOU N, CHATZIS T, PAPASTRATIS I, et al. A comprehensive study on deep learning-based methods for sign language recognition[J]. IEEE Transactions on Multimedia, 2022, 24: 1750–1762. doi: 10.1109/TMM.2021.3070438
|
[34] |
LI Dongxu, OPAZO C R, YU Xin, et al. Word-Level deep sign language recognition from video: A new large-scale dataset and methods comparison[C]. 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, 2020: 1459–1469.
|
[35] |
RASTGOO R, KIANI K, and ESCALERA S. Hand sign language recognition using multi-view hand skeleton[J]. Expert Systems with Applications, 2020, 150: 113336. doi: 10.1016/j.eswa.2020.113336
|
[36] |
YANG S, JUNG S, KANG H, et al. The Korean sign language dataset for action recognition[C]. The 26th International Conference on Multimedia Modeling, Daejeon, South Korea, 2020: 532–542.
|
[37] |
NEIDLE C, OPOKU A, and METAXAS D. ASL video corpora & sign bank: Resources available through the American sign language linguistic research project (ASLLRP)[J]. arXiv: 2201.07899, 2022.
|
[38] |
VON AGRIS U and KRAISS K F. Towards a video corpus for signer-independent continuous sign language recognition[C]. The 7th International Workshop on Gesture in Human-Computer Interaction and Simulation, Lisbon, Portugal, 2007, 11: 2.
|
[39] |
FORSTER J, SCHMIDT C, HOYOUX T, et al. RWTH-PHOENIX-weather: A large vocabulary sign language recognition and translation corpus[C]. The Eighth International Conference on Language Resources and Evaluation, Istanbul, Turkey, 2012: 3785–3789.
|
[40] |
GUTIERREZ-SIGUT E, COSTELLO B, BAUS C, et al. LSE-Sign: A lexical database for Spanish sign language[J]. Behavior Research Methods, 2016, 48(1): 123–137. doi: 10.3758/s13428-014-0560-1
|
[41] |
CAMGOZ N C, HADFIELD S, KOLLER O, et al. Neural sign language translation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7784–7793.
|
[42] |
DUARTE A, PALASKAR S, VENTURA L, et al. How2Sign: A large-scale multimodal dataset for continuous American sign language[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2735–2744.
|
[43] |
PUGEAULT N and BOWDEN R. Spelling it out: Real-time ASL fingerspelling recognition[C]. 2011 IEEE International Conference on Computer Vision workshops (ICCV Workshops), Barcelona, Spain, 2011: 1114–1119.
|
[44] |
MUELLER F, BERNARD F, SOTNYCHENKO O, et al. GANerated hands for real-time 3D hand tracking from monocular RGB[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, United States, 2018: 49–59.
|
[45] |
HAQUE A, PENG Boya, LUO Zelun, et al. Towards viewpoint invariant 3D human pose estimation[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 160–177.
|
[46] |
TANG Ao, LU Ke, WANG Yufei, et al. A real-time hand posture recognition system using deep neural networks[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(2): 21. doi: 10.1145/2735952
|
[47] |
KOLLER O, NEY H, and BOWDEN R. Deep learning of mouth shapes for sign language[C]. 2015 IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 85–91.
|
[48] |
SARASWATHI S and KUMAR K A. Predicting American sign language from hand gestures using image processing and deep learning[M]. TRIPATHY A K, SARKAR M, SAHOO J P, et al. Advances in Distributed Computing and Machine Learning. Singapore: Springer, 2021: 423–431.
|
[49] |
SRIDEVI P, ISLAM T, DEBNATH U, et al. Sign language recognition for speech and hearing impaired by image processing in MATLAB[C]. 2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Malambe, Sri Lanka, 2018: 1–4.
|
[50] |
HAMED A, BELAL N A, and MAHAR K M. Arabic sign language alphabet recognition based on HOG-PCA using microsoft kinect in complex backgrounds[C]. The 6th International Conference on Advanced Computing, Bhimavaram, India, 2016: 451–458.
|
[51] |
SYKORA P, KAMENCAY P, and HUDEC R. Comparison of SIFT and SURF methods for use on hand gesture recognition based on depth map[J]. AASRI Procedia, 2014, 9: 19–24. doi: 10.1016/j.aasri.2014.09.005
|
[52] |
MA Xiang, YUAN Lin, WEN Ruoshi, et al. Sign language recognition based on concept learning[C]. 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 2020: 1–6.
|
[53] |
SHI Bowen, DEL RIO A M, KEANE J, et al. American sign language fingerspelling recognition in the wild[C]. 2018 IEEE Spoken Language Technology Workshop, Athens, Greece, 2018: 145–152.
|
[54] |
NANDI U, GHORAI A, SINGH M M, et al. Indian sign language alphabet recognition system using CNN with diffGrad optimizer and stochastic pooling[J]. Multimedia Tools and Applications, 2022, 82: 9627–9648. doi: 10.1007/S11042-021-11595-4
|
[55] |
SARMA D, KAVYASREE V, and BHUYAN M K. Two-stream fusion model for dynamic hand gesture recognition using 3D-CNN and 2D-CNN optical flow guided motion template[J]. arXiv: 2007.08847, 2020.
|
[56] |
HUANG Jie, ZHOU Wengang, LI Houqiang, et al. Sign language recognition using 3D convolutional neural networks[C]. 2015 IEEE International Conference on Multimedia and Expo (ICME), Turin, Italy, 2015: 1–6.
|
[57] |
MARUYAMA M, GHOSE S, INOUE K, et al. Word-level sign language recognition with multi-stream neural networks focusing on local regions[J]. arXiv: 2106.15989, 2021.
|
[58] |
HAN Xiangzu, LU Fei, YIN Jianqin, et al. Sign language recognition based on R(2+1)D with spatial–temporal–channel attention[J]. IEEE Transactions on Human-Machine Systems, 2022, 52(4): 687–698. doi: 10.1109/THMS.2022.3144000
|
[59] |
LIU Tao, ZHOU Wengang, and LI Houqiang. Sign language recognition with long short-term memory[C]. 2016 IEEE International Conference on Image Processing, Phoenix, USA, 2016: 25–28.
|
[60] |
LEE C K M, NG K K H, CHEN C H, et al. American sign language recognition and training method with recurrent neural network[J]. Expert Systems with Applications, 2021, 167: 114403. doi: 10.1016/j.eswa.2020.114403
|
[61] |
ABDULLAHI S B and CHAMNONGTHAI K. American sign language words recognition of skeletal videos using processed video driven multi-stacked deep LSTM[J]. Sensors, 2022, 22(4): 1406. doi: 10.3390/s22041406
|
[62] |
BENDARKAR D S, SOMASE P A, REBARI P K, et al. Web based recognition and translation of American sign language with CNN and RNN[J]. International Journal of Online and Biomedical Engineering, 2021, 17(1): 34–50. doi: 10.3991/ijoe.v17i01.18585
|
[63] |
ABDULLAHI S B and CHAMNONGTHAI K. American sign language words recognition using spatio-temporal prosodic and angle features: A sequential learning approach[J]. IEEE Access, 2022, 10: 15911–15923. doi: 10.1109/ACCESS.2022.3148132
|
[64] |
TAKAYAMA N, BENITEZ-GARCIA G, and TAKAHASHI H. Sign language recognition based on spatial-temporal graph convolution-transformer[J]. Journal of the Japan Society for Precision Engineering, 2021, 87(12): 1028–1035. doi: 10.2493/jjspe.87.1028
|
[65] |
VÁZQUEZ-ENRÍQUEZ M, ALBA-CASTRO J L, DOCÍO-FERNÁNDEZ L, et al. Isolated sign language recognition with multi-scale spatial-temporal graph convolutional networks[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Nashville, USA, 2021: 3457–3466.
|
[66] |
ELAKKIYA R, VIJAYAKUMAR P, and KUMAR N. An optimized Generative Adversarial Network based continuous sign language classification[J]. Expert Systems with Applications, 2021, 182: 115276. doi: 10.1016/J.ESWA.2021.115276
|
[67] |
HUANG Jie, ZHOU Wengang, LI Houqiang, et al. Attention-based 3D-CNNs for large-vocabulary sign language recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(9): 2822–2832. doi: 10.1109/TCSVT.2018.2870740
|
[68] |
黄杰. 基于深度学习的手语识别技术研究[D]. [博士论文], 中国科学技术大学, 2018.
HUANG Jie. Deep learning based sign language recognition[D]. [Ph. D. dissertation], University of Science and Technology of China, 2018.
|
[69] |
ZHANG Shujun and ZHANG Qun. Sign language recognition based on global-local attention[J]. Journal of Visual Communication and Image Representation, 2021, 80: 103280. doi: 10.1016/j.jvcir.2021.103280
|
[70] |
BOHÁČEK M and HRÚZ M. Sign pose-based transformer for word-level sign language recognition[C]. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, Waikoloa, USA, 2022: 182–191.
|
[71] |
RASTGOO R, KIANI K, ESCALERA S, et al. Multi-modal zero-shot sign language recognition[J]. arXiv: 2109.00796, 2021.
|
[72] |
SARHAN N and FRINTROP S. Transfer learning for videos: From action recognition to sign language recognition[C]. 2020 IEEE International Conference on Image Processing, Abu Dhabi, United Arab Emirates, 2020: 1811–1815.
|
[73] |
YIRTICI T and YURTKAN K. Regional-CNN-based enhanced Turkish sign language recognition[J]. Signal, Image and Video Processing, 2022, 16(5): 1305–1311. doi: 10.1007/s11760-021-02082-2
|
[74] |
SRIVASTAVA S, GANGWAR A, MISHRA R, et al. Sign language recognition system using TensorFlow object detection API[C]. The 1st International Conference on Advanced Network Technologies and Intelligent Computing, Varanasi, India, 2021: 634–646.
|
[75] |
BILGE Y C, IKIZLER-CINBIS N, and CINBIS R G. Zero-shot sign language recognition: Can textual data uncover sign languages?[C]. BMVC, Cardiff, UK, 2019: 169–182.
|
[76] |
HAN Mengmeng, CHEN Jiajun, LI Ling, et al. Visual hand gesture recognition with convolution neural network[C]. The 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Shanghai, China, 2016: 287–291.
|
[77] |
LAHIANI H, ELLEUCH M, and KHERALLAH M. Real time hand gesture recognition system for android devices[C]. The 15th International Conference on Intelligent Systems Design and Applications (ISDA), Marrakech, Morocco, 2015: 591–596.
|
[78] |
YAMAGUCHI Y, YOSHITOMI Y, and FUSHIMI H. Recognition of words expressed by sign language using thermal-image processing[J]. Artificial Life and Robotics, 2007, 11(1): 18–22. doi: 10.1007/s10015-006-0391-y
|
[79] |
CUI Runpeng, LIU Hu, and ZHANG Changshui. Recurrent convolutional neural networks for continuous sign language recognition by staged optimization[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7361–7369.
|
[80] |
LIPTON Z C, BERKOWITZ J, and ELKAN C. A critical review of recurrent neural networks for sequence learning[J]. arXiv: 1506.00019, 2015.
|
[81] |
MOLCHANOV P, GUPTA S, KIM K, et al. Hand gesture recognition with 3D convolutional neural networks[C]. The 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, USA, 2015: 1–7.
|
[82] |
QIU Zhaofan, YAO Ting, and MEI Tao. Learning spatio-temporal representation with pseudo-3D residual networks[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 5533–5541.
|
[83] |
GAO Liqing, LI Haibo, LIU Zhijian, et al. RNN-Transducer based Chinese sign language recognition[J]. Neurocomputing, 2021, 434: 45–54. doi: 10.1016/j.neucom.2020.12.006
|
[84] |
YAN Sijie, XIONG Yuanjun, and LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. The Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, Louisiana, USA, 2018: 912.
|
[85] |
WEN Shuhuan, TIAN Wenbo, ZHANG Hong, et al. Semantic segmentation using a GAN and a weakly supervised method based on deep transfer learning[J]. IEEE Access, 2020, 8: 176480–176494. doi: 10.1109/ACCESS.2020.3026684
|
[86] |
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4489–4497.
|
[87] |
ZHOU Yizhou, SUN Xiaoyan, ZHA Zhengjun, et al. MiCT: Mixed 3D/2D convolutional tube for human action recognition[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 449–458.
|
[88] |
PINTO R F, BORGES C D B, ALMEIDA A M A, et al. Static hand gesture recognition based on convolutional neural networks[J]. Journal of Electrical and Computer Engineering, 2019, 2019: 4167890. doi: 10.1155/2019/4167890
|
[89] |
BAUER B and HIENZ H. Relevant features for video-based continuous sign language recognition[C]. The Fourth IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000: 440–445.
|
[90] |
GWETH Y L, PLAHL C, and NEY H. Enhanced continuous sign language recognition using PCA and neural network features[C]. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, USA, 2012: 55–60.
|
[91] |
YANG Su and ZHU Qing. Continuous Chinese sign language recognition with CNN-LSTM[C]. Proceedings of SPIE 10420, Ninth International Conference on Digital Image Processing (ICDIP 2017), Hong Kong, China, 2017.
|
[92] |
ZHOU Hao, ZHOU Wengang, and LI Houqiang. Dynamic pseudo label decoding for continuous sign language recognition[C]. 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 2019: 1282–1287.
|
[93] |
CAMGÖZ N C, KOLLER O, HADFIELD S, et al. Sign language transformers: Joint end-to-end sign language recognition and translation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10023–10033.
|
[94] |
SHARMA S, GUPTA R, and KUMAR A. Continuous sign language recognition using isolated signs data and deep transfer learning[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 14: 1531–1542. doi: 10.1007/s12652-021-03418-z
|
[95] |
KAN Jichao, HU Kun, HAGENBUCHNER M, et al. Sign language translation with hierarchical spatio-temporal graph neural network[C]. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2022: 2131–2140.
|
[96] |
PAPASTRATIS I, DIMITROPOULOS K, and DARAS P. Continuous sign language recognition through a context-aware generative adversarial network[J]. Sensors, 2021, 21(7): 2437. doi: 10.3390/s21072437
|
[97] |
BEN SLIMANE F and BOUGUESSA M. Context matters: Self-attention for sign language recognition[C]. 2020 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 7884–7891.
|
[98] |
XIE Pan, ZHAO Mengyi, and HU Xiaohui. PiSLTRc: Position-informed sign language transformer with content-aware convolution[J]. IEEE Transactions on Multimedia, 2022, 24: 3908–3919. doi: 10.1109/TMM.2021.3109665
|
[99] |
HAN Xiangzu, LU Fei, and TIAN Guohui. Efficient 3D CNNs with knowledge transfer for sign language recognition[J]. Multimedia Tools and Applications, 2022, 81(7): 10071–10090. doi: 10.1007/s11042-022-12051-7
|
[100] |
SHIN J, MATSUOKA A, HASAN A M, et al. American sign language alphabet recognition by extracting feature from hand pose estimation[J]. Sensors, 2021, 21(17): 5856. doi: 10.3390/s21175856
|
[101] |
SANALOHIT J and KATANYUKUL T. TFS recognition: Investigating MPH] {Thai finger spelling recognition: Investigating MediaPipe Hands potentials[J]. arXiv: 2201.03170, 2022.
|
[102] |
RASTGOO R, KIANI K, and ESCALERA S. Real-time isolated hand sign language recognition using deep networks and SVD[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(1): 591–611. doi: 10.1007/s12652-021-02920-8
|
[103] |
AIOUEZ S, HAMITOUCHE A, BELMADOUI M, et al. Real-time Arabic sign language recognition based on YOLOv5[C/OL]. The 2nd International Conference on Image Processing and Vision Engineering - IMPROVE, 2022: 17–25.
|
[104] |
LIM K M, TAN A W C, LEE C P, et al. Isolated sign language recognition using Convolutional Neural Network hand modelling and Hand Energy Image[J]. Multimedia Tools and Applications, 2019, 78(14): 19917–19944. doi: 10.1007/s11042-019-7263-7
|
[105] |
ROY P P, KUMAR P, and KIM B G. An efficient sign language recognition (SLR) system using camshift tracker and hidden Markov model (HMM)[J]. SN Computer Science, 2021, 2(2): 79. doi: 10.1007/S42979-021-00485-Z
|
[106] |
RASTGOO R, KIANI K, and ESCALERA S. Multi-modal deep hand sign language recognition in still images using restricted Boltzmann machine[J]. Entropy, 2018, 20(11): 809. doi: 10.3390/e20110809
|
[107] |
XU Biao, HUANG Shiliang, and YE Zhongfu. Application of tensor train decomposition in S2VT model for sign language recognition[J]. IEEE Access, 2021, 9: 35646–35653. doi: 10.1109/ACCESS.2021.3059660
|
[108] |
FERREIRA P M, CARDOSO J S, and REBELO A. On the role of multimodal learning in the recognition of sign language[J]. Multimedia Tools and Applications, 2019, 78(8): 10035–10056. doi: 10.1007/s11042-018-6565-5
|
[109] |
KOLIVAND H, JOUDAKI S, SUNAR M S, et al. A new framework for sign language alphabet hand posture recognition using geometrical features through artificial neural network (part 1)[J]. Neural Computing and Applications, 2021, 33(10): 4945–4963. doi: 10.1007/s00521-020-05279-7
|
[110] |
BANSAL S R, WADHAWAN S, and GOEL R. mRMR-PSO: A hybrid feature selection technique with a multiobjective approach for sign language recognition[J]. Arabian Journal for Science and Engineering, 2022, 47(8): 10365–10380. doi: 10.1007/s13369-021-06456-z
|
[111] |
GÖKÇE Ç, ÖZDEMIR O, KINDIROĞLU A A, et al. Score-level multi cue fusion for sign language recognition[C]. Proceedings of the European Conference on Computer Vision, Glasgow, UK, 2020: 294–309.
|
[112] |
KRATIMENOS A, PAVLAKOS G, and MARAGOS P. Independent sign language recognition with 3d body, hands, and face reconstruction[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 4270–4274.
|