Citation: | LI Daxiang, NAN Yixuan, LIU Ying. A Double Knowledge Distillation Model for Remote Sensing Image Scene Classification[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3558-3567. doi: 10.11999/JEIT221017 |
[1] |
马少鹏, 梁路, 滕少华. 一种轻量级的高光谱遥感图像分类方法[J]. 广东工业大学学报, 2021, 38(3): 29–35. doi: 10.12052/gdutxb.200153
MA Shaopeng, LIANG Lu, and TENG Shaohua. A lightweight hyperspectral remote sensing image classification method[J]. Journal of Guangdong University of Technology, 2021, 38(3): 29–35. doi: 10.12052/gdutxb.200153
|
[2] |
PAN Deng, ZHANG Meng, and ZHANG Bo. A generic FCN-based approach for the road-network extraction from VHR remote sensing images–using OpenStreetMap as benchmarks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2662–2673. doi: 10.1109/JSTARS.2021.3058347
|
[3] |
姜亚楠, 张欣, 张春雷, 等. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36–44. doi: 10.6046/zrzyyg.2020303
JIANG Yanan, ZHANG Xin, ZHANG Chunlei, et al. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36–44. doi: 10.6046/zrzyyg.2020303
|
[4] |
CHAIB S, GU Yanfeng, and YAO Hongxun. An informative feature selection method based on sparse PCA for VHR scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 147–151. doi: 10.1109/LGRS.2015.2501383
|
[5] |
李彦甫, 范习健, 杨绪兵, 等. 基于自注意力卷积网络的遥感图像分类[J]. 北京林业大学学报, 2021, 43(10): 81–88. doi: 10.12171/j.1000-1522.20210196
LI Yanfu, FAN Xijian, YANG Xubing, et al. Remote sensing image classification framework based on self-attention convolutional neural network[J]. Journal of Beijing Forestry University, 2021, 43(10): 81–88. doi: 10.12171/j.1000-1522.20210196
|
[6] |
XU Kejie, HUANG Hong, DENG Peifang, et al. Deep feature aggregation framework driven by graph convolutional network for scene classification in remote sensing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(10): 5751–5765. doi: 10.1109/TNNLS.2021.3071369
|
[7] |
CHEN Sibao, WEI Qingsong, WANG Wenzhong, et al. Remote sensing scene classification via multi-branch local attention network[J]. IEEE Transactions on Image Processing, 2021, 31: 99–109. doi: 10.1109/TIP.2021.3127851
|
[8] |
CHEN Xi, XING Zhiqiang, and CHENG Yuyang. Introduction to model compression knowledge distillation[C]. 2021 6th International Conference on Intelligent Computing and Signal Processing, Xi'an, China, 2021: 1464–1467.
|
[9] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[10] |
LUO Yana and WANG Zhongsheng. An improved ResNet algorithm based on CBAM[C]. 2021 International Conference on Computer Network, Electronic and Automation, Xi'an, China, 2021: 121–125.
|
[11] |
KE Xiao, ZHANG Xiaoling, ZHANG Tianwen, et al. SAR ship detection based on an improved faster R-CNN using deformable convolution[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 3565–3568.
|
[12] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11531–11539.
|
[13] |
ZENG Weiyu, WANG Tianlei, CAO Jiuwen, et al. Clustering-guided pairwise metric triplet loss for person reidentification[J]. IEEE Internet of Things Journal, 2022, 9(16): 15150–15160. doi: 10.1109/JIOT.2022.3147950
|
[14] |
PARK W, KIM D, LU Yan, et al. Relational knowledge distillation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 3962–3971.
|
[15] |
XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945
|
[16] |
CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and State of the Art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998
|
[17] |
TUN N L, GAVRILOV A, TUN N M, et al. Remote sensing data classification using A hybrid pre-trained VGG16 CNN-SVM classifier[C]. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg, Russia, 2021: 2171–2175.
|
[18] |
LV Pengyuan, WU Wenjun, ZHONG Yanfei, et al. SCViT: A spatial-channel feature preserving vision transformer for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4409512. doi: 10.1109/TGRS.2022.3157671
|
[19] |
WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155–1167. doi: 10.1109/TGRS.2018.2864987
|
[20] |
PAN Haihong, PANG Zaijun, WANG Yaowei, et al. A new image recognition and classification method combining transfer learning algorithm and mobilenet model for welding defects[J]. IEEE Access, 2020, 8: 119951–119960. doi: 10.1109/ACCESS.2020.3005450
|
[21] |
DOSOVITSKI A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C/OL]. The 9th International Conference on Learning Representations, 2021.
|
[22] |
HE Nanjun, FANG Leyuan, LI Shutao, et al. Remote sensing scene classification using multilayer stacked covariance pooling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 6899–6910. doi: 10.1109/TGRS.2018.2845668
|
[23] |
ZHANG Wei, TANG Ping, and ZHAO Lijun. Remote sensing image scene classification using CNN-CapsNet[J]. Remote Sensing, 2019, 11(5): 494. doi: 10.3390/rs11050494
|
[24] |
HE Nanjun, FANG Leyuan, LI Shutao, et al. Skip-connected covariance network for remote sensing scene classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1461–1474. doi: 10.1109/TNNLS.2019.2920374
|
[25] |
SUN Hao, LI Siyuan, ZHENG Xiangtao, et al. Remote sensing scene classification by gated bidirectional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 82–96. doi: 10.1109/TGRS.2019.2931801
|
[26] |
XU Kejie, HUANG Hong, LI Yuan, et al. Multilayer feature fusion network for scene classification in remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1894–1898. doi: 10.1109/LGRS.2019.2960026
|
[27] |
XU Chengjun, ZHU Guobin, and SHU Jingqian. A lightweight intrinsic mean for remote sensing classification with lie group kernel function[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(10): 1741–1745. doi: 10.1109/LGRS.2020.3007775
|
[28] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618–626.
|