Citation: | YANG Xiaodong, LI Kaibin, DU Xiaoni, LIANG Lifang, JIA Meichun. Security Analysis of LBlock and Its Application Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3745-3751. doi: 10.11999/JEIT221003 |
[1] |
BIHAM E and SHAMIR A. Differential cryptanalysis of DES-like cryptosystems[J]. Journal of Cryptology, 1991, 4(1): 3–72. doi: 10.1007/BF00630563
|
[2] |
HOSPODAR G, GIERLICHS B, DE Mulder E, et al. Machine learning in side-channel analysis: A first study[J]. Journal of Cryptographic Engineering, 2011, 1(4): 293–302. doi: 10.1007/s13389-011-0023-x
|
[3] |
DAEMEN J and RIJMEN V. The Rijndael block cipher: AES proposal[C]. The First Candidate Conference (AeS1), Alexandria, USA, 1999: 343–348.
|
[4] |
ALANI M M. Neuro-cryptanalysis of DES and triple-DES[C]. Proceedings of the 19th International Conference on Neural Information Processing, Doha, Qatar, 2012: 637–646.
|
[5] |
HU Xinyi and ZHAO Yaqun. Research on plaintext restoration of AES based on neural network[J]. Security and Communication Networks, 2018, 2018: 6868506. doi: 10.1155/2018/6868506
|
[6] |
GOHR A. Improving attacks on round-reduced speck32/64 using deep learning[C]. The 39th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2019: 150–179.
|
[7] |
BENAMIRA A, GERAULT D, PEYRIN T, et al. A deeper look at machine learning-based cryptanalysis[C]. The 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, Zagreb, Croatia, 2021: 805–835.
|
[8] |
SU Hengchuan, ZHU Xuanyong, and MING Duan. Polytopic attack on round-reduced simon32/64 using deep learning[C]. The 16th International Conference on Information Security and Cryptology, Guangzhou, China, 2020: 3–20.
|
[9] |
宿恒川, 朱宣勇, 段明. 基于PU分类的差分区分器及其应用[J]. 密码学报, 2021, 8(2): 330–337. doi: 10.13868/j.cnki.jcr.000441
SU Hengchuan, ZHU Xuanyong, and DUAN Ming. Differential distinguisher based on PU learning and its application[J]. Journal of Cryptologic Research, 2021, 8(2): 330–337. doi: 10.13868/j.cnki.jcr.000441
|
[10] |
HOU Zezhou, REN Jiongjiong, and CHEN Shaozhen. Improve neural distinguisher for cryptanalysis[EB/OL]. https://eprint.iacr.org/2021/1017, 2021.
|
[11] |
CHEN Yi, SHEN Yantian, YU Hongbo, et al. Neural aided statistical attack for cryptanalysis[EB/OL]. https://eprint.iacr.org/2020/1620, 2020.
|
[12] |
BAKSI A. Machine learning-assisted differential distinguishers for lightweight ciphers[M]. BAKSI A. Classical and Physical Security of Symmetric Key Cryptographic Algorithms. Singapore: Springer, 2022: 141–162.
|
[13] |
WU Wenling and ZHANG Lei. LBlock: A lightweight block cipher[C]. The 9th International Conference on Applied Cryptography and Network Security, Nerja, Spain, 2011: 327–344.
|
[14] |
XIE M, LI Jingjing, and ZANG Yuechuan. Related-key impossible differential cryptanalysis of LBlock[J]. Chinese Journal of Electronics, 2017, 26(1): 35–41. doi: 10.1049/cje.2016.06.031
|
[15] |
CAO Wenqin and ZHANG Wentao. Multidimensional linear cryptanalysis with key difference invariant bias for block ciphers[J]. Cybersecurity, 2021, 4(1): 32. doi: 10.1186/s42400-021-00096-4
|
[16] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[17] |
ZHOU Chunning, ZHANG Wentao, DING Tianyou, et al. Improving the MILP-based security evaluation algorithm against differential/linear cryptanalysis using a divide-and-conquer approach[J]. IACR Transactions on Symmetric Cryptology, 2020, 2019(4): 438–469. doi: 10.13154/tosc.v2019.i4.438-469
|