Citation: | GUAN Xin, GUO Jiaen, LU Yu. Discriminant Adversarial Hashing Transformer for Cross-modal Vessel Image Retrieval[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4411-4420. doi: 10.11999/JEIT220980 |
[1] |
MUKHERJEE S, COHEN S, and GERTNER I. Content-based vessel image retrieval[J]. SPIE Automatic Target Recognition XXVI, Baltimore, USA, 2016, 9844: 984412.
|
[2] |
何柏青, 王自敏. 反馈机制的大规模舰船图像检索[J]. 舰船科学技术, 2018, 40(4A): 157–159. doi: 10.3404/j.issn.1672-7649.2018.4A.053
HE Baiqing and WANG Zimin. The feedback mechanism of large-scale ship image retrieval[J]. Ship Science and Technology, 2018, 40(4A): 157–159. doi: 10.3404/j.issn.1672-7649.2018.4A.053
|
[3] |
LI Yansheng, ZHANG Yongjun, HUANG Xin, et al. Learning source-invariant deep hashing convolutional neural networks for cross-source remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6521–6536. doi: 10.1109/TGRS.2018.2839705
|
[4] |
XIONG Wei, LV Yafei, ZHANG Xiaohan, et al. Learning to translate for cross-source remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4860–4874. doi: 10.1109/TGRS.2020.2968096
|
[5] |
ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251.
|
[6] |
XIONG Wei, XIONG Zhenyu, CUI Yaqi, et al. A discriminative distillation network for cross-source remote sensing image retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1234–1247. doi: 10.1109/JSTARS.2020.2980870
|
[7] |
SUN Yuxi, FENG Shanshan, YE Yunming, et al. Multisensor fusion and explicit semantic preserving-based deep hashing for cross-modal remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5219614. doi: 10.1109/TGRS.2021.3136641
|
[8] |
HU Peng, PENG Xi, ZHU Hongyuan, et al. Learning cross-modal retrieval with noisy labels[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5399–5409.
|
[9] |
XU Xing, SONG Jingkuan, LU Huimin, et al. Modal-adversarial semantic learning network for extendable cross-modal retrieval[C]. 2018 ACM on International Conference on Multimedia Retrieval, Yokohama, Japan, 2018: 46–54.
|
[10] |
WANG Bokun, YANG Yang, XU Xing, et al. Adversarial cross-modal retrieval[C]. The 25th ACM International Conference on Multimedia, Mountain View, USA, 2017: 154–162.
|
[11] |
DONG Xinfeng, LIU Li, ZHU Lei, et al. Adversarial graph convolutional network for cross-modal retrieval[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1634–1645. doi: 10.1109/TCSVT.2021.3075242
|
[12] |
GU Wen, GU Xiaoyan, GU Jingzi, et al. Adversary guided asymmetric hashing for cross-modal retrieval[C]. 2019 on International Conference on Multimedia Retrieval, Ottawa, Canada, 2019: 159–167.
|
[13] |
HU Rong, YANG Jie, ZHU Bangpei, et al. Research on ship image retrieval based on BoVW model under hadoop platform[C]. The 1st International Conference on Information Science and Systems, Jeju, Korea, 2018: 156–160.
|
[14] |
TIAN Chi, XIA Jinfeng, TANG Ji, et al. Deep image retrieval of large-scale vessels images based on BoW model[J]. Multimedia Tools and Applications, 2020, 79(13/14): 9387–9401. doi: 10.1007/s11042-019-7725-y
|
[15] |
邹利华. 基于PCA降维的舰船图像检索方法[J]. 舰船科学技术, 2020, 42(24): 97–99.
ZOU Lihua. Research on ship image retrieval method based on PCA dimension reduction[J]. Ship Science and Technology, 2020, 42(24): 97–99.
|
[16] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C/OL]. The 9th International Conference on Learning Representations, 2021.
|
[17] |
HERMANS A, BEYER L, and LEIBE B. In defense of the triplet loss for person re-identification[J]. arXiv: 1703.07737, 2017.
|
[18] |
LI Tao, ZHANG Zheng, PEI Lishen, et al. HashFormer: Vision transformer based deep hashing for image retrieval[J]. IEEE Signal Processing Letters, 2022, 29: 827–831. doi: 10.1109/LSP.2022.3157517
|
[19] |
LI Mengyang, SUN Weiwei, DU Xuan, et al. Ship classification by the fusion of panchromatic image and multi-spectral image based on pseudo siamese LightweightNetwork[J]. Journal of Physics: Conference Series, 2021, 1757: 012022.
|
[20] |
ZHANG M M, CHOI J, DANIILIDIS K, et al. VAIS: A dataset for recognizing maritime imagery in the visible and infrared spectrums[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, USA, 2015: 10–16.
|
[21] |
关欣, 国佳恩, 衣晓. 基于低秩双线性池化注意力网络的舰船目标识别[J]. 系统工程与电子技术, 2023, 45(5): 1305–1314.
GUAN Xin, GUO Jiaen, and YI Xiao. Low rank bilinear pooling attention network for ship target recognition[J]. Systems Engineering and Electronics, 2023, 45(5): 1305–1314.
|
[22] |
BAI Cong, ZENG Chao, MA Qing, et al. Deep adversarial discrete hashing for cross-modal retrieval[C]. 2020 International Conference on Multimedia Retrieval, Dublin, Ireland, 2020: 525–531.
|
[23] |
JIANG Qingyuan and LI Wujun. Deep cross-modal hashing[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3270–3278.
|
[24] |
XIONG Wei, XIONG Zhenyu, ZHANG Yang, et al. A deep cross-modality hashing network for SAR and optical remote sensing images retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5284–5296. doi: 10.1109/JSTARS.2020.3021390
|
[25] |
ZHU Han, LONG Mingsheng, WANG Jianmin, et al. Deep hashing network for efficient similarity retrieval[C]. The Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 2415–2421.
|
[26] |
LIU Haomiao, WANG Ruiping, SHAN Shiguang, et al. Deep supervised hashing for fast image retrieval[J]. International Journal of Computer Vision, 2019, 127(9): 1217–1234. doi: 10.1007/s11263-019-01174-4
|
[27] |
CAO Yue, LONG Mingsheng, LIU Bin, et al. Deep Cauchy hashing for hamming space retrieval[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1229–1237.
|
[28] |
LI Yunqiang, PEI Wenjie, ZHA Yufei, et al. Push for quantization: Deep fisher hashing[C]. The 30th British Machine Vision Conference 2019, Cardiff, UK, 2019.
|
[29] |
FAN Lixin, NG K W, JU Ce, et al. Deep polarized network for supervised learning of accurate binary hashing codes[C]. The Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 2020: 825–831.
|