Citation: | MIN Minghui, ZHANG Peng, ZHU Haopeng, CHENG Zhipeng, MA Shuai, LI Shiyin, XIAO Liang, PENG Guojun. Energy Harvesting Assisted Intelligent Computation Offloading Method for the IoT in Mining[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3547-3557. doi: 10.11999/JEIT220973 |
[1] |
丁恩杰, 俞啸, 夏冰, 等. 矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J]. 煤炭学报, 2022, 47(1): 564–578. doi: 10.13225/j.cnki.jccs.yg21.1930
DING Enjie, YU Xiao, XIA Bing, et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society, 2022, 47(1): 564–578. doi: 10.13225/j.cnki.jccs.yg21.1930
|
[2] |
MENG Yifan and LI Jingzhao. Task offloading and resource allocation mechanism of moving edge computing in mining environment[J]. IEEE Access, 2021, 9: 155534–155542. doi: 10.1109/ACCESS.2021.3129464
|
[3] |
赵小虎, 张凯, 赵志凯, 等. 矿山物联网网络技术发展趋势与关键技术[J]. 工矿自动化, 2018, 44(4): 1–7. doi: 10.13272/j.issn.1671-251x.17324
ZHAO Xiaohu, ZHANG Kai, ZHAO Zhikai, et al. Developing trend and key technologies of network technology of mine Internet of things[J]. Industry and Mine Automation, 2018, 44(4): 1–7. doi: 10.13272/j.issn.1671-251x.17324
|
[4] |
DENG Xiaoheng, YIN Jian, GUAN Peiyuan, et al. Intelligent delay-aware partial computing task offloading for multiuser industrial Internet of Things through edge computing[J]. IEEE Internet of Things Journal, 2023, 10(4): 2954–2966. doi: 10.1109/JIOT.2021.3123406
|
[5] |
PORAMBAGE P, OKWUIBE J, LIYANAGE M, et al. Survey on multi-access edge computing for internet of things realization[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2961–2991. doi: 10.1109/COMST.2018.2849509
|
[6] |
SUN Lu, WANG Jie, and LIN Bin. Task allocation strategy for MEC-enabled IIoTs via Bayesian network based evolutionary computation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3441–3449. doi: 10.1109/TII.2020.3019572
|
[7] |
DINH T Q, TANG Jianhua, LA Q D, et al. Offloading in mobile edge computing: Task allocation and computational frequency scaling[J]. IEEE Transactions on Communications, 2017, 65(8): 3571–3584. doi: 10.1109/TCOMM.2017.2699660
|
[8] |
袁亮, 俞啸, 丁恩杰, 等. 矿山物联网人-机-环状态感知关键技术研究[J]. 通信学报, 2020, 41(2): 1–12. doi: 10.11959/j.issn.1000-436x.2020036
YUAN Liang, YU Xiao, DING Enjie, et al. Research on key technologies of human-machine-environment states perception in mine Internet of Things[J]. Journal on Communications, 2020, 41(2): 1–12. doi: 10.11959/j.issn.1000-436x.2020036
|
[9] |
周代勇. 井下风致振动压电能量收集技术[J]. 煤矿安全, 2021, 52(9): 153–156. doi: 10.13347/j.cnki.mkaq.2021.09.024
ZHOU Daiyong. Wind-induced vibration piezoelectric energy harvesting technology in underground mine[J]. Safety in Coal Mines, 2021, 52(9): 153–156. doi: 10.13347/j.cnki.mkaq.2021.09.024
|
[10] |
YE Junliang and GHARAVI H. Deep reinforcement learning-assisted energy harvesting wireless networks[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(2): 990–1002. doi: 10.1109/TGCN.2020.3045075
|
[11] |
RODRIGUEZ J C, NICO V, and PUNCH J. Powering wireless sensor nodes for industrial IoT applications using vibration energy harvesting[C]. IEEE 5th World Forum on Internet of Things, Limerick, Ireland, 2019: 392–397.
|
[12] |
SUN Yingying, SONG Chunhe, YU Shimao, et al. Energy-efficient task offloading based on differential evolution in edge computing system with energy harvesting[J]. IEEE Access, 2021, 9: 16383–16391. doi: 10.1109/ACCESS.2021.3052901
|
[13] |
RANJAN A, SAHU H B, and MISRA P. Wave propagation model for wireless communication in underground mines[C]. 2015 IEEE Bombay Section Symposium (IBSS), Mumbai, India, 2015: 1–5.
|
[14] |
LEI Lei, XU Huijuan, XIONG Xiong, et al. Multiuser resource control with deep reinforcement learning in IoT edge computing[J]. IEEE Internet of Things Journal, 2019, 6(6): 10119–10133. doi: 10.1109/JIOT.2019.2935543
|
[15] |
XIAO Liang, LU Xiaozhen, XU Tangwei, et al. Reinforcement learning-based mobile offloading for edge computing against jamming and interference[J]. IEEE Transactions on Communications, 2020, 68(10): 6114–6126. doi: 10.1109/TCOMM.2020.3007742
|
[16] |
MIN Minghui, WAN Xiaoyue, XIAO Liang, et al. Learning-based privacy-aware offloading for healthcare IoT with energy harvesting[J]. IEEE Internet of Things Journal, 2019, 6(3): 4307–4316. doi: 10.1109/JIOT.2018.2875926
|
[17] |
WANG Hao and HUANG Jianwei. Incentivizing energy trading for interconnected microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2647–2657. doi: 10.1109/TSG.2016.2614988
|
[18] |
MIN Minghui, XIAO Liang, CHEN Ye, et al. Learning-based computation offloading for IoT devices with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1930–1941. doi: 10.1109/TVT.2018.2890685
|
[19] |
WANG Jiadai, ZHAO Lei, LIU Jiajia, et al. Smart resource allocation for mobile edge computing: A deep reinforcement learning approach[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(3): 1529–1541. doi: 10.1109/TETC.2019.2902661
|
[20] |
QIU Chengrun, HU Yang, CHEN Yan, et al. Deep deterministic policy gradient (DDPG)-based energy harvesting wireless communications[J]. IEEE Internet of Things Journal, 2019, 6(5): 8577–8588. doi: 10.1109/JIOT.2019.2921159
|
[21] |
REN Jieying and XU Shaoyi. DDPG based computation offloading and resource allocation for MEC systems with energy harvesting[C]. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021: 1–5.
|
[22] |
MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964
|
[23] |
QIN Meng, CHENG Nan, JING Zewei, et al. Service-oriented energy-latency tradeoff for IoT task partial offloading in MEC-enhanced multi-RAT networks[J]. IEEE Internet of Things Journal, 2021, 8(3): 1896–1907. doi: 10.1109/JIOT.2020.3015970
|
[24] |
国家市场监督管理总局, 国家标准化管理委员会. GB/T 3836.1-2021 爆炸性环境 第1部分: 设备 通用要求[S]. 北京: 中国标准出版社, 2021.
State Administration for Market Regulation and Standardization Administration of the People's Republic of China. GB/T 3836.1-2021 Explosive atmospheres—Part 1: Equipment—General requirements[S]. Beijing: Standards Press of China, 2021.
|