Advanced Search
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
MIN Minghui, ZHANG Peng, ZHU Haopeng, CHENG Zhipeng, MA Shuai, LI Shiyin, XIAO Liang, PENG Guojun. Energy Harvesting Assisted Intelligent Computation Offloading Method for the IoT in Mining[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3547-3557. doi: 10.11999/JEIT220973
Citation: MIN Minghui, ZHANG Peng, ZHU Haopeng, CHENG Zhipeng, MA Shuai, LI Shiyin, XIAO Liang, PENG Guojun. Energy Harvesting Assisted Intelligent Computation Offloading Method for the IoT in Mining[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3547-3557. doi: 10.11999/JEIT220973

Energy Harvesting Assisted Intelligent Computation Offloading Method for the IoT in Mining

doi: 10.11999/JEIT220973
Funds:  The National Natural Science Foundation of China(62101557, 61971366), China Postdoctoral Science Foundation (2022M713378), Fundamental Research Fundations for the Central Universities (2042022kf0021)
  • Received Date: 2022-07-21
  • Rev Recd Date: 2023-03-31
  • Available Online: 2023-04-04
  • Publish Date: 2023-10-31
  • This paper proposes an Energy Harvesting (EH)-assisted mining IoT intelligent computation offloading method for the mine IoT device with limited computing, energy, and memory resources and smart mining scenario with a large number of latency-sensitive computation tasks. Mobile Edge Computing (MEC) technology is used to assist task computing of mine IoT devices, and EH technology is investigated to power energy-constrained mine IoT devices. The intelligent computation offloading mechanism based on Q-learning can dynamically explore and optimize computation offloading policy under the condition of an unknown precise mine system model. In addition, a computation offloading mechanism based on Deep Deterministic Policy Gradient (DDPG) is proposed. The curse of dimensionality in complex mining scenarios is resolved, the discretization error caused by policy discretization is reduced, and the computation offloading performance is further improved. Theoretical analysis and simulation results verify that the proposed mechanism can reduce energy consumption, computing delays, and task failure rate. This helps ensure safety and improve the production efficiency of IoT in mining.
  • loading
  • [1]
    丁恩杰, 俞啸, 夏冰, 等. 矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J]. 煤炭学报, 2022, 47(1): 564–578. doi: 10.13225/j.cnki.jccs.yg21.1930

    DING Enjie, YU Xiao, XIA Bing, et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society, 2022, 47(1): 564–578. doi: 10.13225/j.cnki.jccs.yg21.1930
    [2]
    MENG Yifan and LI Jingzhao. Task offloading and resource allocation mechanism of moving edge computing in mining environment[J]. IEEE Access, 2021, 9: 155534–155542. doi: 10.1109/ACCESS.2021.3129464
    [3]
    赵小虎, 张凯, 赵志凯, 等. 矿山物联网网络技术发展趋势与关键技术[J]. 工矿自动化, 2018, 44(4): 1–7. doi: 10.13272/j.issn.1671-251x.17324

    ZHAO Xiaohu, ZHANG Kai, ZHAO Zhikai, et al. Developing trend and key technologies of network technology of mine Internet of things[J]. Industry and Mine Automation, 2018, 44(4): 1–7. doi: 10.13272/j.issn.1671-251x.17324
    [4]
    DENG Xiaoheng, YIN Jian, GUAN Peiyuan, et al. Intelligent delay-aware partial computing task offloading for multiuser industrial Internet of Things through edge computing[J]. IEEE Internet of Things Journal, 2023, 10(4): 2954–2966. doi: 10.1109/JIOT.2021.3123406
    [5]
    PORAMBAGE P, OKWUIBE J, LIYANAGE M, et al. Survey on multi-access edge computing for internet of things realization[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2961–2991. doi: 10.1109/COMST.2018.2849509
    [6]
    SUN Lu, WANG Jie, and LIN Bin. Task allocation strategy for MEC-enabled IIoTs via Bayesian network based evolutionary computation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3441–3449. doi: 10.1109/TII.2020.3019572
    [7]
    DINH T Q, TANG Jianhua, LA Q D, et al. Offloading in mobile edge computing: Task allocation and computational frequency scaling[J]. IEEE Transactions on Communications, 2017, 65(8): 3571–3584. doi: 10.1109/TCOMM.2017.2699660
    [8]
    袁亮, 俞啸, 丁恩杰, 等. 矿山物联网人-机-环状态感知关键技术研究[J]. 通信学报, 2020, 41(2): 1–12. doi: 10.11959/j.issn.1000-436x.2020036

    YUAN Liang, YU Xiao, DING Enjie, et al. Research on key technologies of human-machine-environment states perception in mine Internet of Things[J]. Journal on Communications, 2020, 41(2): 1–12. doi: 10.11959/j.issn.1000-436x.2020036
    [9]
    周代勇. 井下风致振动压电能量收集技术[J]. 煤矿安全, 2021, 52(9): 153–156. doi: 10.13347/j.cnki.mkaq.2021.09.024

    ZHOU Daiyong. Wind-induced vibration piezoelectric energy harvesting technology in underground mine[J]. Safety in Coal Mines, 2021, 52(9): 153–156. doi: 10.13347/j.cnki.mkaq.2021.09.024
    [10]
    YE Junliang and GHARAVI H. Deep reinforcement learning-assisted energy harvesting wireless networks[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(2): 990–1002. doi: 10.1109/TGCN.2020.3045075
    [11]
    RODRIGUEZ J C, NICO V, and PUNCH J. Powering wireless sensor nodes for industrial IoT applications using vibration energy harvesting[C]. IEEE 5th World Forum on Internet of Things, Limerick, Ireland, 2019: 392–397.
    [12]
    SUN Yingying, SONG Chunhe, YU Shimao, et al. Energy-efficient task offloading based on differential evolution in edge computing system with energy harvesting[J]. IEEE Access, 2021, 9: 16383–16391. doi: 10.1109/ACCESS.2021.3052901
    [13]
    RANJAN A, SAHU H B, and MISRA P. Wave propagation model for wireless communication in underground mines[C]. 2015 IEEE Bombay Section Symposium (IBSS), Mumbai, India, 2015: 1–5.
    [14]
    LEI Lei, XU Huijuan, XIONG Xiong, et al. Multiuser resource control with deep reinforcement learning in IoT edge computing[J]. IEEE Internet of Things Journal, 2019, 6(6): 10119–10133. doi: 10.1109/JIOT.2019.2935543
    [15]
    XIAO Liang, LU Xiaozhen, XU Tangwei, et al. Reinforcement learning-based mobile offloading for edge computing against jamming and interference[J]. IEEE Transactions on Communications, 2020, 68(10): 6114–6126. doi: 10.1109/TCOMM.2020.3007742
    [16]
    MIN Minghui, WAN Xiaoyue, XIAO Liang, et al. Learning-based privacy-aware offloading for healthcare IoT with energy harvesting[J]. IEEE Internet of Things Journal, 2019, 6(3): 4307–4316. doi: 10.1109/JIOT.2018.2875926
    [17]
    WANG Hao and HUANG Jianwei. Incentivizing energy trading for interconnected microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2647–2657. doi: 10.1109/TSG.2016.2614988
    [18]
    MIN Minghui, XIAO Liang, CHEN Ye, et al. Learning-based computation offloading for IoT devices with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1930–1941. doi: 10.1109/TVT.2018.2890685
    [19]
    WANG Jiadai, ZHAO Lei, LIU Jiajia, et al. Smart resource allocation for mobile edge computing: A deep reinforcement learning approach[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(3): 1529–1541. doi: 10.1109/TETC.2019.2902661
    [20]
    QIU Chengrun, HU Yang, CHEN Yan, et al. Deep deterministic policy gradient (DDPG)-based energy harvesting wireless communications[J]. IEEE Internet of Things Journal, 2019, 6(5): 8577–8588. doi: 10.1109/JIOT.2019.2921159
    [21]
    REN Jieying and XU Shaoyi. DDPG based computation offloading and resource allocation for MEC systems with energy harvesting[C]. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021: 1–5.
    [22]
    MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964
    [23]
    QIN Meng, CHENG Nan, JING Zewei, et al. Service-oriented energy-latency tradeoff for IoT task partial offloading in MEC-enhanced multi-RAT networks[J]. IEEE Internet of Things Journal, 2021, 8(3): 1896–1907. doi: 10.1109/JIOT.2020.3015970
    [24]
    国家市场监督管理总局, 国家标准化管理委员会. GB/T 3836.1-2021 爆炸性环境 第1部分: 设备 通用要求[S]. 北京: 中国标准出版社, 2021.

    State Administration for Market Regulation and Standardization Administration of the People's Republic of China. GB/T 3836.1-2021 Explosive atmospheres—Part 1: Equipment—General requirements[S]. Beijing: Standards Press of China, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (365) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return