Advanced Search
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WANG Dahu, LIU Chang, WANG Jian, YAO Kai, ZHANG Zhen. A High Precision Parallel Principal Skewness Analysis Algorithm and Its Application to Remote Sensing Images[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3492-3501. doi: 10.11999/JEIT220960
Citation: WANG Dahu, LIU Chang, WANG Jian, YAO Kai, ZHANG Zhen. A High Precision Parallel Principal Skewness Analysis Algorithm and Its Application to Remote Sensing Images[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3492-3501. doi: 10.11999/JEIT220960

A High Precision Parallel Principal Skewness Analysis Algorithm and Its Application to Remote Sensing Images

doi: 10.11999/JEIT220960
  • Received Date: 2022-07-18
  • Accepted Date: 2022-12-20
  • Rev Recd Date: 2022-11-13
  • Available Online: 2022-12-23
  • Publish Date: 2023-10-31
  • Principal Skewness Analysis (PSA), as a third-order extension of Principal Component Analysis (PCA), is often used for blind image separation, SAR image denoising, and hyperspectral feature extraction. However, the existing PSA algorithm can only obtain approximate solutions, which will affect the accuracy of subsequent image processing. In view of this problem, a high-precision Parallel Principal Skewness Analysis (PPSA) algorithm based on the existing PSA algorithm is proposed. The PPSA algorithm considers fully the data structure, and selects the eigenvectors of all slices of the co-skewness tensor as the initial value of the iteration, which can accurately obtain the actual solution. Simulation experiments and actual remote sensing image experiments verify the effectiveness and superiority of the PSA algorithm.
  • loading
  • [1]
    GENG Xiurui, SUN Kang, JI Luyan, et al. Optimizing the endmembers using volume invariant constrained model[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3441–3449. doi: 10.1109/TIP.2015.2446196
    [2]
    CHEN Sibao, WEI Qingsong, WANG Wenzhong, et al. Remote sensing scene classification via multi-branch local attention network[J]. IEEE Transactions on Image Processing, 2022, 31: 99–109. doi: 10.1109/tip.2021.3127851
    [3]
    FENG Xiaoling. Better fusion of multi-scale features for remote sensing object detection[C]. 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 2022: 271–274.
    [4]
    ZHAO Bin, ULFARSSON M O, SVEINSSON J R, et al. Hyperspectral image denoising using spectral-spatial transform-based sparse and low-rank representations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5522125. doi: 10.1109/tgrs.2022.3142988
    [5]
    DE OLIVEIRA V A, CHABERT M, OBERLIN T, et al. Satellite image compression and denoising with neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4504105. doi: 10.1109/lgrs.2022.3145992
    [6]
    HOTELLING H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology, 1933, 24(6): 417–441. doi: 10.1037/h0071325
    [7]
    COMON P. Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36(3): 287–314. doi: 10.1016/0165-1684(94)90029-9
    [8]
    HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626–634. doi: 10.1109/72.761722
    [9]
    OJA E and YUAN Zhijian. The FastICA algorithm revisited: Convergence analysis[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1370–1381. doi: 10.1109/tnn.2006.880980
    [10]
    GENG Xiurui, JI Luyan, and SUN Kang. Principal skewness analysis: Algorithm and its application for multispectral/hyperspectral images indexing[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1821–1825. doi: 10.1109/lgrs.2014.2311168
    [11]
    GENG Xiurui, MENG Lingbo, LI Lin, et al. Momentum principal skewness analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2262–2266. doi: 10.1109/lgrs.2015.2465814
    [12]
    MENG Lingbo, GENG Xiurui, and JI Luyan. Principal kurtosis analysis and its application for remote-sensing imagery[J]. International Journal of Remote Sensing, 2016, 37(10): 2280–2293. doi: 10.1080/01431161.2016.1171927
    [13]
    ANANDKUMAR A, GE Rong, HSU D, et al. Tensor decompositions for learning latent variable models[J]. Journal of Machine Learning Research, 2014, 15: 2773–2832. doi: 10.21236/ada604494
    [14]
    KOLDA T G and BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455–500. doi: 10.1137/07070111X
    [15]
    GENG Xiurui and WANG Lei. NPSA: Nonorthogonal principal skewness analysis[J]. IEEE Transactions on Image Processing, 2020, 29: 6396–6408. doi: 10.1109/tip.2020.2984849
    [16]
    LIM L H. Singular values and eigenvalues of tensors: A variational approach[C]. 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, Puerto Vallarta, Mexico, 2005: 129–132.
    [17]
    QI Liqun. Eigenvalues of a real supersymmetric tensor[J]. Journal of Symbolic Computation, 2005, 40(6): 1302–1324. doi: 10.1016/j.jsc.2005.05.007
    [18]
    WANG Lei and GENG Xiurui. The real eigenpairs of symmetric tensors and its application to independent component analysis[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 10137–10150. doi: 10.1109/tcyb.2021.3055238
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (387) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return