Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LIU Xin, XIE Guihui, TANG Xiaoqing. Passive WiFi Internet of Things Backscatter Communication Based on Electromagnetic Energy Harvesting[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2366-2374. doi: 10.11999/JEIT220951
Citation: LIU Xin, XIE Guihui, TANG Xiaoqing. Passive WiFi Internet of Things Backscatter Communication Based on Electromagnetic Energy Harvesting[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2366-2374. doi: 10.11999/JEIT220951

Passive WiFi Internet of Things Backscatter Communication Based on Electromagnetic Energy Harvesting

doi: 10.11999/JEIT220951
Funds:  The Natural Science Foundation of Hubei Province (2022CFB840), Zhongshan Science and Technology Plan Project (2019AG032)
  • Received Date: 2022-07-14
  • Rev Recd Date: 2022-09-13
  • Available Online: 2022-09-17
  • Publish Date: 2023-07-10
  • To solve the problems of high power consumption, requiring manual maintenance and frequent battery replacement of traditional Internet of Things (IoT) communication device, a passive WiFi IoT backscattering communication method based on electromagnetic wave energy harvesting is proposed. The device is implemented based on a low-power microprocessor platform. It can use the electromagnetic wave energy collected by itself to achieve ultra-low-power WiFi scattering communication, having advantages of low power consumption, no batteries, small size, low production cost, and no manual maintenance. It can be widely used in IoT applications.
  • loading
  • [1]
    SHAFIQUE K, KHAWAJA B A, SABIR F, et al. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios[J]. IEEE Access, 2020, 8: 23022–23040. doi: 10.1109/ACCESS.2020.2970118
    [2]
    郭海潮, 张献, 杨庆新, 等. 空间全向无线电能传输技术研究与应用综述[J/OL]. 中国电机工程学报, 2022, 42(2): 1–18. http://kns.cnki.net/kcms/detail/11.2107.TM.20220124.1515.004.html, 2022.

    GUO Haichao, ZHANG Xian, YANG Qingxin, et al. Review of research and application of spatial omnidirectional wireless power transmission technology[J/OL]. Proceedings of the CSEE, 2022, 42(2): 1–18. http://kns.cnki.net/kcms/detail/11.2107.TM.20220124.1515.004.html, 2022.
    [3]
    李阳, 石少博, 刘雪莉, 等. 磁场耦合式无线电能传输耦合机构综述[J]. 电工技术学报, 2021, 36(S2): 389–403. doi: 10.19595/j.cnki.1000-6753.tces.L90276

    LI Yang, SHI Shaobo, LIU Xueli, et al. Overview of magnetic coupling mechanism for wireless power transfer[J]. Transactions of China Electrotechnical Societ, 2021, 36(S2): 389–403. doi: 10.19595/j.cnki.1000-6753.tces.L90276
    [4]
    LITVIŅENKO A, ĀBOLTIŅŠ A, TJUKOVS S, et al. The impact of waveform on the efficiency of RF to DC conversion using prefabricated energy harvesting device[C]. 2017 Advances in Wireless and Optical Communications (RTUWO), Riga, Latvia, 2017: 61–66.
    [5]
    BITO J, BAHR R, HESTER J G, et al. A novel solar and electromagnetic energy harvesting system with a 3-D printed package for energy efficient internet-of-things wireless sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1831–1842. doi: 10.1109/TMTT.2017.2660487
    [6]
    LIU Ye, LI Dong, DU Bangsong, et al. Rethinking sustainable sensing in agricultural internet of things: From power supply perspective[J]. IEEE Wireless Communications, 2022, 29(4): 102–109.
    [7]
    FRITH J. A Billion Little Pieces: RFID and Infrastructures of Identification[M]. Cambridge: MIT Press, 2019: 93–142.
    [8]
    苏健, 杨晓娇, 韩雨. 一种时间高效的易于实现的多标签射频识别技术[J]. 电子学报, 2018, 46(4): 903–910. doi: 10.3969/j.issn.0372-2112.2018.04.019

    SU Jian, YANG Xiaojiao, and HAN Yu. A time-efficient and easy-to-implement RFID technology for multiple tags[J]. Acta Electronica Sinica, 2018, 46(4): 903–910. doi: 10.3969/j.issn.0372-2112.2018.04.019
    [9]
    WANT R. An introduction to RFID technology[J]. IEEE Pervasive Computing, 2006, 5(1): 25–33. doi: 10.1109/MPRV.2006.2
    [10]
    KELLOGG B, TALLA V, SMITH J R, et al. Passive Wi-Fi: Bringing low power to Wi-Fi transmissions[J]. GetMobile:Mobile Computing and Communications, 2016, 20(3): 38–41. doi: 10.1145/3036699.3036711
    [11]
    唐晓庆, 谢桂辉, 佘亚军, 等. 基于MCU的无源Wi-Fi散射通信方法[J]. 电子学报, 2019, 47(10): 2069–2075. doi: 10.3969/j.issn.0372-2112.2019.10.007

    TANG Xiaoqing, XIE Guihui, SHE Yajun, et al. Passive Wi-Fi scattering communication method based on MCU[J]. Acta Electronica Sinica, 2019, 47(10): 2069–2075. doi: 10.3969/j.issn.0372-2112.2019.10.007
    [12]
    MIT Technology Review. 10 breakthrough technologies 2016[EB/OL]. https://www.technologyreview.com/lists/technologies/2016/, 2022.
    [13]
    TALLA V, HESSAR M, KELLOGG B, et al. LoRa backscatter: Enabling the vision of ubiquitous connectivity[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 105. doi: 10.1145/3130970
    [14]
    TALLA V, KELLOGG B, GOLLAKOTA S, et al. Battery-free cellphone[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(2): 25. doi: 10.1145/3090090
    [15]
    ENSWORTH J F and REYNOLDS M S. BLE-backscatter: Ultralow-power IoT nodes compatible with Bluetooth 4.0 low energy (BLE) smartphones and tablets[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3360–3368. doi: 10.1109/TMTT.2017.2687866
    [16]
    CHEN Si, ZHANG Maolin, ZHAO Jia, et al. Reliable and practical Bluetooth backscatter with commodity devices[J]. IEEE/ACM Transactions on Networking, 2021, 29(4): 1717–1729. doi: 10.1109/TNET.2021.3068865
    [17]
    IYER V, TALLA V, KELLOGG B, et al. Inter-technology backscatter: Towards internet connectivity for implanted devices[C]. The 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 2016: 356–369.
    [18]
    LI Dong. Hybrid active and passive antenna selection for backscatter-assisted MISO systems[J]. IEEE Transactions on Communications, 2020, 68(11): 7258–7269. doi: 10.1109/TCOMM.2020.3014917
    [19]
    IEEE. IEEE 802.11–2007 IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements - Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. New York: IEEE, 2012.
    [20]
    ZHANG Pengyu, BHARADIA D, JOSHI K, et al. HitchHike: Practical backscatter using commodity WiFi[C]. The 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, Stanford, USA, 2016: 259–271.
    [21]
    KANTAREDDY S N R, MATHEWS I, SUN Shijing, et al. Perovskite PV-powered RFID: Enabling low-cost self-powered IoT sensors[J]. IEEE Sensors Journal, 2020, 20(1): 471–478. doi: 10.1109/JSEN.2019.2939293
    [22]
    HU Jia, ZHONG Linling, MA Tao, et al. Long-range FM backscatter tag with tunnel diode[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(1): 92–95. doi: 10.1109/LMWC.2021.3117033
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (588) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return