Citation: | LIU Xin, XIE Guihui, TANG Xiaoqing. Passive WiFi Internet of Things Backscatter Communication Based on Electromagnetic Energy Harvesting[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2366-2374. doi: 10.11999/JEIT220951 |
[1] |
SHAFIQUE K, KHAWAJA B A, SABIR F, et al. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios[J]. IEEE Access, 2020, 8: 23022–23040. doi: 10.1109/ACCESS.2020.2970118
|
[2] |
郭海潮, 张献, 杨庆新, 等. 空间全向无线电能传输技术研究与应用综述[J/OL]. 中国电机工程学报, 2022, 42(2): 1–18. http://kns.cnki.net/kcms/detail/11.2107.TM.20220124.1515.004.html, 2022.
GUO Haichao, ZHANG Xian, YANG Qingxin, et al. Review of research and application of spatial omnidirectional wireless power transmission technology[J/OL]. Proceedings of the CSEE, 2022, 42(2): 1–18. http://kns.cnki.net/kcms/detail/11.2107.TM.20220124.1515.004.html, 2022.
|
[3] |
李阳, 石少博, 刘雪莉, 等. 磁场耦合式无线电能传输耦合机构综述[J]. 电工技术学报, 2021, 36(S2): 389–403. doi: 10.19595/j.cnki.1000-6753.tces.L90276
LI Yang, SHI Shaobo, LIU Xueli, et al. Overview of magnetic coupling mechanism for wireless power transfer[J]. Transactions of China Electrotechnical Societ, 2021, 36(S2): 389–403. doi: 10.19595/j.cnki.1000-6753.tces.L90276
|
[4] |
LITVIŅENKO A, ĀBOLTIŅŠ A, TJUKOVS S, et al. The impact of waveform on the efficiency of RF to DC conversion using prefabricated energy harvesting device[C]. 2017 Advances in Wireless and Optical Communications (RTUWO), Riga, Latvia, 2017: 61–66.
|
[5] |
BITO J, BAHR R, HESTER J G, et al. A novel solar and electromagnetic energy harvesting system with a 3-D printed package for energy efficient internet-of-things wireless sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1831–1842. doi: 10.1109/TMTT.2017.2660487
|
[6] |
LIU Ye, LI Dong, DU Bangsong, et al. Rethinking sustainable sensing in agricultural internet of things: From power supply perspective[J]. IEEE Wireless Communications, 2022, 29(4): 102–109.
|
[7] |
FRITH J. A Billion Little Pieces: RFID and Infrastructures of Identification[M]. Cambridge: MIT Press, 2019: 93–142.
|
[8] |
苏健, 杨晓娇, 韩雨. 一种时间高效的易于实现的多标签射频识别技术[J]. 电子学报, 2018, 46(4): 903–910. doi: 10.3969/j.issn.0372-2112.2018.04.019
SU Jian, YANG Xiaojiao, and HAN Yu. A time-efficient and easy-to-implement RFID technology for multiple tags[J]. Acta Electronica Sinica, 2018, 46(4): 903–910. doi: 10.3969/j.issn.0372-2112.2018.04.019
|
[9] |
WANT R. An introduction to RFID technology[J]. IEEE Pervasive Computing, 2006, 5(1): 25–33. doi: 10.1109/MPRV.2006.2
|
[10] |
KELLOGG B, TALLA V, SMITH J R, et al. Passive Wi-Fi: Bringing low power to Wi-Fi transmissions[J]. GetMobile:Mobile Computing and Communications, 2016, 20(3): 38–41. doi: 10.1145/3036699.3036711
|
[11] |
唐晓庆, 谢桂辉, 佘亚军, 等. 基于MCU的无源Wi-Fi散射通信方法[J]. 电子学报, 2019, 47(10): 2069–2075. doi: 10.3969/j.issn.0372-2112.2019.10.007
TANG Xiaoqing, XIE Guihui, SHE Yajun, et al. Passive Wi-Fi scattering communication method based on MCU[J]. Acta Electronica Sinica, 2019, 47(10): 2069–2075. doi: 10.3969/j.issn.0372-2112.2019.10.007
|
[12] |
MIT Technology Review. 10 breakthrough technologies 2016[EB/OL]. https://www.technologyreview.com/lists/technologies/2016/, 2022.
|
[13] |
TALLA V, HESSAR M, KELLOGG B, et al. LoRa backscatter: Enabling the vision of ubiquitous connectivity[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 105. doi: 10.1145/3130970
|
[14] |
TALLA V, KELLOGG B, GOLLAKOTA S, et al. Battery-free cellphone[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(2): 25. doi: 10.1145/3090090
|
[15] |
ENSWORTH J F and REYNOLDS M S. BLE-backscatter: Ultralow-power IoT nodes compatible with Bluetooth 4.0 low energy (BLE) smartphones and tablets[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3360–3368. doi: 10.1109/TMTT.2017.2687866
|
[16] |
CHEN Si, ZHANG Maolin, ZHAO Jia, et al. Reliable and practical Bluetooth backscatter with commodity devices[J]. IEEE/ACM Transactions on Networking, 2021, 29(4): 1717–1729. doi: 10.1109/TNET.2021.3068865
|
[17] |
IYER V, TALLA V, KELLOGG B, et al. Inter-technology backscatter: Towards internet connectivity for implanted devices[C]. The 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 2016: 356–369.
|
[18] |
LI Dong. Hybrid active and passive antenna selection for backscatter-assisted MISO systems[J]. IEEE Transactions on Communications, 2020, 68(11): 7258–7269. doi: 10.1109/TCOMM.2020.3014917
|
[19] |
IEEE. IEEE 802.11–2007 IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements - Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. New York: IEEE, 2012.
|
[20] |
ZHANG Pengyu, BHARADIA D, JOSHI K, et al. HitchHike: Practical backscatter using commodity WiFi[C]. The 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, Stanford, USA, 2016: 259–271.
|
[21] |
KANTAREDDY S N R, MATHEWS I, SUN Shijing, et al. Perovskite PV-powered RFID: Enabling low-cost self-powered IoT sensors[J]. IEEE Sensors Journal, 2020, 20(1): 471–478. doi: 10.1109/JSEN.2019.2939293
|
[22] |
HU Jia, ZHONG Linling, MA Tao, et al. Long-range FM backscatter tag with tunnel diode[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(1): 92–95. doi: 10.1109/LMWC.2021.3117033
|