Advanced Search
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
JI Wei, ZHAO Yanan, LIU Ziqing, LI Ting, LIANG Yan, SONG Yunchao, LI Fei. QoS-oriented Power Allocation Scheme for Multi-user NOMA System Assisted by RIS[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3603-3611. doi: 10.11999/JEIT220946
Citation: JI Wei, ZHAO Yanan, LIU Ziqing, LI Ting, LIANG Yan, SONG Yunchao, LI Fei. QoS-oriented Power Allocation Scheme for Multi-user NOMA System Assisted by RIS[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3603-3611. doi: 10.11999/JEIT220946

QoS-oriented Power Allocation Scheme for Multi-user NOMA System Assisted by RIS

doi: 10.11999/JEIT220946
Funds:  The National Natural Science Foundation of China (61871238)
  • Received Date: 2022-07-13
  • Rev Recd Date: 2023-01-20
  • Available Online: 2023-02-04
  • Publish Date: 2023-10-31
  • Reconfigurable Intelligent Surface (RIS) can be regarded as a ‘relay’ with special functions in communication network. It can cooperate with Non-Orthogonal Multiple Access (NOMA) system to construct a coordinated information transmission scheme. Considering the different Quality of Service (QoS) requirements of different user devices in the future Internet of Things (IoT) scenarios, a RIS-assisted multi-user NOMA communication system model is proposed. According to the different QoS requirements of two types of users (information users and energy users), a power allocation method based on iterative optimization is designed. This method minimizes the total transmit power of the system by jointly designing the phase-shift matrix of RIS, the beamforming of base station and the order of successive interference cancellation in NOMA system, so as to reduce comprehensively the energy consumption of base station. Simulation results show that compared with the scenario without RIS, RIS-assisted NOMA system can effectively reduce the energy consumption of base station. In the case with RIS, the energy consumption of the proposed power allocation method is significantly lower than that of random phase selection at RIS and zero-forcing beamforming at base station.
  • loading
  • [1]
    ANDREWS J G, BUZZI S, CHOI W, et al. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065–1082. doi: 10.1109/JSAC.2014.2328098
    [2]
    RAJ R and DIXIT A. An energy-efficient power allocation scheme for NOMA-based IoT sensor networks in 6G[J]. IEEE Sensors Journal, 2022, 22(7): 7371–7384. doi: 10.1109/JSEN.2022.3153314
    [3]
    HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534
    [4]
    WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [5]
    WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916
    [6]
    CHENG Yanyu, LI K H, LIU Yuanwei, et al. Non-orthogonal multiple access (NOMA) with multiple intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7184–7195. doi: 10.1109/TWC.2021.3081423
    [7]
    YANG Gang, XU Xinyue, and LIANG Yingchang. Intelligent reflecting surface assisted non-orthogonal multiple access[C]. 2020 IEEE Wireless Communications and Networking Conference, Seoul, Korea (South), 2020: 1–6.
    [8]
    ZUO Jiakuo, LIU Yuanwei, QIN Zhijin, et al. The application of intelligent reflecting surface in downlink NOMA systems[C]. 2020 IEEE International Conference on Communications Workshops, Dublin, Ireland, 2020: 1–6.
    [9]
    DING Zhiguo, SCHOBER R, and POOR H V. On the impact of phase shifting designs on IRS-NOMA[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1596–1600. doi: 10.1109/LWC.2020.2991116
    [10]
    FANG Fang, XU Yanqing, PHAM Q V, et al. Energy-efficient design of IRS-NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 14088–14092. doi: 10.1109/TVT.2020.3024005
    [11]
    HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [12]
    ZENG Piao, WU Qingqing, and QIAO Deli. Energy minimization for IRS-aided WPCNs with non-linear energy harvesting model[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2592–2596. doi: 10.1109/LWC.2021.3109642
    [13]
    CHOI J, CANTOS S, and KIM Y H. Low-complexity passive beamforming for IRS-aided uplink NOMA[C]. 2021 International Conference on Information and Communication Technology Convergence, Jeju Island, Korea, 2021: 831–833.
    [14]
    ESHAGHI M. An energy harvesting solution for IoT sensors using MEMS Technology[D]. [Master dissertation], University of Windsor, 2018.
    [15]
    PAN Cunhua, REN Hong, WANG Kezhi, et al. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1719–1734. doi: 10.1109/JSAC.2020.3000802
    [16]
    XU Jie, LIU Liang, and ZHANG Rui. Multiuser MISO beamforming for simultaneous wireless information and power transfer[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4798–4810. doi: 10.1109/TSP.2014.2340817
    [17]
    WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5.
    [18]
    WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Channel estimation for RIS-empowered multi-user MISO wireless communications[J]. IEEE Transactions on Communications, 2021, 69(6): 4144–4157. doi: 10.1109/TCOMM.2021.3063236
    [19]
    YOU Changsheng, ZHENG Beixiong, and ZHANG Rui. Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2604–2620. doi: 10.1109/JSAC.2020.3007056
    [20]
    WEI Li, HUANG Chongwen, GUO Qinghua, et al. Joint channel estimation and signal recovery for RIS-empowered multiuser communications[J]. IEEE Transactions on Communications, 2022, 70(7): 4640–4655. doi: 10.1109/TCOMM.2022.3179771
    [21]
    ZHI Kangda, PAN Cunhua, REN Hong, et al. Reconfigurable intelligent surface-aided MISO systems with statistical CSI: Channel estimation, analysis and optimization[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, Lucca, Italy, 2021: 576–580.
    [22]
    SAITO Y, KISHIYAMA Y, BENJEBBOUR A, et al. Non-orthogonal multiple access (NOMA) for cellular future radio access[C]. 2013 IEEE 77th Vehicular Technology Conference, Dresden, Germany, 2003: 1–5.
    [23]
    HUA Meng, WU Qingqing, and POOR H V. Power-efficient passive beamforming and resource allocation for IRS-aided WPCNs[J]. IEEE Transactions on Communications, 2022, 70(5): 3250–3265. doi: 10.1109/TCOMM.2022.3161688
    [24]
    WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (623) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return