Citation: | LUO Jiangtao, YANG Heping, RAN Yongyi. Joint Optimization of Content Caching and Power Distribution for Internet of Vehicles Based on Parametric Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2476-2483. doi: 10.11999/JEIT220857 |
[1] |
YOUSEFPOUR A, ISHIGAKI G, GOUR R, et al. On reducing IoT service delay via fog offloading[J]. IEEE Internet of Things Journal, 2018, 5(2): 998–1010. doi: 10.1109/JIOT.2017.2788802
|
[2] |
HE Ying, ZHAO Nan, and YIN Hongxi. Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 44–55. doi: 10.1109/TVT.2017.2760281
|
[3] |
TANG Fengxiao, MAO Bomin, KATO N, et al. Comprehensive survey on machine learning in vehicular network: Technology, applications and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 2027–2057. doi: 10.1109/COMST.2021.3089688
|
[4] |
XU Lianming, YANG Zexuan, WU Huaqing, et al. Socially driven joint optimization of communication, caching, and computing resources in vehicular networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 461–476. doi: 10.1109/TWC.2021.3096881
|
[5] |
KAZMI S M A, DANG T N, YAQOOB I, et al. Infotainment enabled smart cars: A joint communication, caching, and computation approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8408–8420. doi: 10.1109/TVT.2019.2930601
|
[6] |
ZHANG Shan, LI Junjie, LUO Hongbin, et al. Towards fresh and low-latency content delivery in vehicular networks: An edge caching aspect[C]. 2018 10th International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2018: 1–6.
|
[7] |
CHEN Jiayin, WU Huaqing, YANG Peng, et al. Cooperative edge caching with location-based and popular contents for vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10291–10305. doi: 10.1109/TVT.2020.3004720
|
[8] |
SUN Yaohua, PENG Mugen, and MAO Shiwen. A game-theoretic approach to cache and radio resource management in fog radio access networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10145–10159. doi: 10.1109/TVT.2019.2935098
|
[9] |
YU Zhengxin, HU Jia, MIN Geyong, et al. Proactive content caching for internet-of-vehicles based on peer-to-peer federated learning[C]. 2020 IEEE 26th International Conference on Parallel and Distributed Systems, Hong Kong, China, 2020: 601–608.
|
[10] |
XING Yuping, SUN Yanhua, QIAO Lan, et al. Deep reinforcement learning for cooperative edge caching in vehicular networks[C]. 2021 13th International Conference on Communication Software and Networks, Chongqing, China, 2021: 144–149.
|
[11] |
QIAO Guanhua, LENG Supeng, MAHARJAN S, et al. Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2020, 7(1): 247–257. doi: 10.1109/JIOT.2019.2945640
|
[12] |
DAI Yueyue, XU Du, LU Yunlong, et al. Deep reinforcement learning for edge caching and content delivery in internet of vehicles[C]. 2019 IEEE/CIC International Conference on Communications in China, Changchun, China, 2019: 134–139.
|
[13] |
CHEN Shuangwu, YAO Zhen, JIANG Xiaofeng, et al. Multi-agent deep reinforcement learning-based cooperative edge caching for ultra-dense next-generation networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2441–2456. doi: 10.1109/TCOMM.2020.3044298
|
[14] |
CHETLUR V V and DHILLON H S. Coverage and rate analysis of downlink cellular vehicle-to-everything (C-V2X) communication[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 1738–1753. doi: 10.1109/TWC.2019.2957222
|
[15] |
ASHERALIEVA A and NIYATO D. Game theory and lyapunov optimization for cloud-based content delivery networks with device-to-device and UAV-enabled caching[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10094–10110. doi: 10.1109/TVT.2019.2934027
|
[16] |
HAO Linchun, REN Pinyi, and DU Qinghe. Satellite QoS routing algorithm based on energy aware and load balancing[C]. 2020 International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2020: 685–690.
|