Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LI Shuzhi, XIONG Weizhi, DENG Xiaohong, WANG Zhiqiang, LIU Hunwen. Byzantine Fault-Tolerance Consensus Algorithm Based on Perfect Binary Tree Communication[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2484-2493. doi: 10.11999/JEIT220798
Citation: LI Shuzhi, XIONG Weizhi, DENG Xiaohong, WANG Zhiqiang, LIU Hunwen. Byzantine Fault-Tolerance Consensus Algorithm Based on Perfect Binary Tree Communication[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2484-2493. doi: 10.11999/JEIT220798

Byzantine Fault-Tolerance Consensus Algorithm Based on Perfect Binary Tree Communication

doi: 10.11999/JEIT220798
Funds:  The National Natural Science Foundation of China (61762046, 62166019), The Natural Science Foundation of Jiangxi Province (2020BABL202032), The Scientific Research Project of Education Department of Jiangxi Province (GJJ218506, GJJ209412)
  • Received Date: 2022-06-16
  • Rev Recd Date: 2022-12-07
  • Available Online: 2022-12-09
  • Publish Date: 2023-07-10
  • Considering the problems of a predictable primary node, high communication complexity, and lack of punishment mechanism for malicious nodes in Practical Byzantine Fault Tolerance (PBFT) algorithm, a consortium chain Byzantine Fault-Tolerant algorithm based on Perfect Binary Tree communication topology(PBT-BFT) is proposed. In PBT-BFT, a reputation evaluation model is designed to evaluate the behavior of nodes. At the same time, a Reputation-based Verifiable Random Function (R-VRF) is proposed, which makes the probability of random extraction positively correlated with the reputation value, and ensures the fairness and randomness of the lottery for nodes with different reputation values. Then, a perfect binary tree communication topology is designed to reduce the communication complexity to linear complexity, and a rotating primary node and Pipelining are proposed to improve the consensus efficiency. The experimental results show that compared with PBFT, the average throughput is increased by 121.6%, and the average delay is reduced by 73.8%, which can be well applied to the consortium chain of large-scale network nodes.
  • loading
  • [1]
    NAKAMOTO S. Bitcoin: A peer-to-peer electronic cash system[EB/OL]. https://bitcoin.org/en/bitcoin-paper, 2022.
    [2]
    陈友荣, 章阳, 陈浩, 等. 面向车联网异构节点的区块链高效一致性共识算法研究[J]. 电子与信息学报, 2022, 44(1): 314–323. doi: 10.11999/JEIT201065

    CHEN Yourong, ZHANG Yang, CHEN Hao, et al. Efficient consistency consensus algorithm of blockchain for heterogeneous nodes in the internet of vehicles[J]. Journal of Electronics &Information Technology, 2022, 44(1): 314–323. doi: 10.11999/JEIT201065
    [3]
    陈友荣, 陈浩, 韩蒙, 等. 基于信用等级划分的医疗数据安全共识算法[J]. 电子与信息学报, 2022, 44(1): 279–287. doi: 10.11999/JEIT200893

    CHEN Yourong, CHEN Hao, HAN Meng, et al. Security consensus algorithm of medical data based on credit rating[J]. Journal of Electronics &Information Technology, 2022, 44(1): 279–287. doi: 10.11999/JEIT200893
    [4]
    邓小鸿, 王智强, 李娟, 等. 主流区块链共识算法对比研究[J]. 计算机应用研究, 2022, 39(1): 1–8. doi: 10.19734/j.issn.1001-3695.2021.06.0210

    DENG Xiaohong, WANG Zhiqiang, LI Juan, et al. Comparative research on mainstream blockchain consensus algorithms[J]. Application Research of Computers, 2022, 39(1): 1–8. doi: 10.19734/j.issn.1001-3695.2021.06.0210
    [5]
    CASTRO M and LISKOV B. Practical Byzantine fault tolerance[C]. The Third Symposium on Operating Systems Design and Implementation, New Orleans, USA, 1999: 173–186.
    [6]
    黄冬艳, 李浪, 陈斌, 等. RBFT: 基于Raft集群的拜占庭容错共识机制[J]. 通信学报, 2021, 42(3): 209–219. doi: 10.11959/j.issn.1000-436x.2021043

    HUANG Dongyan, LI Lang, CHEN Bin, et al. RBFT: A new Byzantine fault-tolerant consensus mechanism based on Raft cluster[J]. Journal on Communications, 2021, 42(3): 209–219. doi: 10.11959/j.issn.1000-436x.2021043
    [7]
    赖英旭, 薄尊旭, 刘静. 基于改进PBFT算法防御区块链中Sybil攻击的研究[J]. 通信学报, 2020, 41(9): 104–117. doi: 10.11959/j.issn.1000-436x.2020170

    LAI Yingxu, BO Zunxu, and LIU Jing. Research on Sybil attack in defense blockchain based on improved PBFT algorithm[J]. Journal on Communications, 2020, 41(9): 104–117. doi: 10.11959/j.issn.1000-436x.2020170
    [8]
    王日宏, 袁杉杉, 徐泉清, 等. 基于时间权重值的共识算法研究[J]. 计算机应用研究, 2021, 38(11): 3243–3248. doi: 10.19734/j.issn.1001-3695.2021.03.0097

    WANG Rihong, YUAN Shanshan, XU Quanqing, et al. Consensus algorithm based on time weight value[J]. Application Research of Computers, 2021, 38(11): 3243–3248. doi: 10.19734/j.issn.1001-3695.2021.03.0097
    [9]
    ZHAN Yu, WANG Baocang, LU Rongxing, et al. DRBFT: Delegated randomization Byzantine fault tolerance consensus protocol for blockchains[J]. Information Sciences, 2021, 559: 8–21. doi: 10.1016/j.ins.2020.12.077
    [10]
    LI Y X, QIAO Liang, and LV Zhihan. An optimized byzantine fault tolerance algorithm for consortium blockchain[J]. Peer-to-Peer Networking and Applications, 2021, 14(5): 2826–2839. doi: 10.1007/s12083-021-01103-8
    [11]
    CHEN Yineng, LI Ming, ZHU Xinghui, et al. An improved algorithm for practical byzantine fault tolerance to large-scale consortium chain[J]. Information Processing & Management, 2022, 59(2): 102884. doi: 10.1016/j.ipm.2022.102884
    [12]
    TANG Song, WANG Zhiqiang, JIANG Jian, et al. Improved PBFT algorithm for high-frequency trading scenarios of alliance blockchain[J]. Scientific Reports, 2022, 12(1): 4426. doi: 10.1038/s41598-022-08587-1
    [13]
    MICALI S, RABIN M, and VADHAN S. Verifiable random functions[C]. The 40th Annual Symposium on Foundations of Computer Science, New York, USA, 1999: 120–130.
    [14]
    GILAD Y, HEMO R, MICALI S, et al. Algorand: Scaling byzantine agreements for cryptocurrencies[C]. The 26th Symposium on Operating Systems Principles, Shanghai, China, 2017: 51–68.
    [15]
    GOLDBERG S, REYZIN L, PAPADOPOULOS D, et al. Verifiable random functions (VRFs)[EB/OL], https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/11/, 2022.
    [16]
    ALQAHTANI S and DEMIRBAS M. Bottlenecks in blockchain consensus protocols[C]. 2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona, Spain, 2021: 1–8.
    [17]
    YIN Maofan, MALKHI D, REITER M K, et al. HotStuff: BFT consensus with linearity and responsiveness[C]. The 2019 ACM Symposium on Principles of Distributed Computing, Toronto, Canada, 2019: 347–356.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (332) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return