Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LÜ Pengfei, SARRAZIN Julien, HUANG Mo. Identification of LOS Clusters in Power Angular Spectrum for Indoor Localization Compatible with Communication at Millimeter Band[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2467-2475. doi: 10.11999/JEIT220786
Citation: LÜ Pengfei, SARRAZIN Julien, HUANG Mo. Identification of LOS Clusters in Power Angular Spectrum for Indoor Localization Compatible with Communication at Millimeter Band[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2467-2475. doi: 10.11999/JEIT220786

Identification of LOS Clusters in Power Angular Spectrum for Indoor Localization Compatible with Communication at Millimeter Band

doi: 10.11999/JEIT220786
Funds:  The National Natural Science Foundation of China (61501454)
  • Received Date: 2022-06-15
  • Rev Recd Date: 2023-05-19
  • Available Online: 2023-06-12
  • Publish Date: 2023-07-10
  • An identification method of Line-of-Sight (LOS) propagation for indoor localization at millimeter band is proposed in this paper. Based on beam training process, the proposed method identifies the LOS clusters in power angular spectrum. After clustering the Power Angular Spectrum (PAS), the statistical characteristics of five different channel metrics intra-clusters, namely the spatial-domain symmetry, kurtosis of impulse response and transfer function, mean excess delay, and Root Mean Square (RMS) delay spread, are analyzed using maximum likelihood ratio and artificial neural network. A noticeable difference between LOS and Non- Line-of-Sight (NLOS) clusters is observed, and validated with measurement.
  • loading
  • [1]
    OBEIDAT H, SHUAIEB W, OBEIDAT O, et al. A review of indoor localization techniques and wireless technologies[J]. Wireless Personal Communications, 2021, 119(1): 289–327. doi: 10.1007/s11277-021-08209-5
    [2]
    RIDOLFI M, KAYA A, BERKVENS R, et al. Self-calibration and collaborative localization for UWB positioning systems: A survey and future research directions[J]. ACM Computing Surveys, 2022, 54(4): 88. doi: 10.1145/3448303
    [3]
    IEEE. 802.11ad-2012 Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 3: Enhancements for very high throughput in the 60 GHz band[S]. New York: IEEE, 2012.
    [4]
    IEEE. 802.11ay-2021 Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 2: Enhanced throughput for operation in license-exempt bands above 45 GHz[S]. New York: IEEE, 2021.
    [5]
    International Telecommunication Union. Recommendation P. 676-6: Attenuation by atmospheric gases[R]. ITU, 2005.
    [6]
    JAFARI A, MAVRIDIS T, PETRILLO L, et al. UWB interferometry TDOA estimation for 60-GHz OFDM communication systems[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1438–1441. doi: 10.1109/LAWP.2015.2512327
    [7]
    DE LIMA C, BELOT D, BERKVENS R, et al. Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges[J]. IEEE Access, 2021, 9: 26902–26925. doi: 10.1109/ACCESS.2021.3053486
    [8]
    XIAO Zhiqiang and ZENG Yong. An overview on integrated localization and communication towards 6G[J]. Science China Information Sciences, 2022, 65(3): 131301. doi: 10.1007/s11432-020-3218-8
    [9]
    YANG Tian, CABANI A, and CHAFOUK H. A survey of recent indoor localization scenarios and methodologies[J]. Sensors, 2021, 21(23): 8086. doi: 10.3390/s21238086
    [10]
    GUVENC I, CHONG C C, and WATANABE F. NLOS identification and mitigation for UWB localization systems[C]. IEEE Wireless Communications & Networking Conference, Hong Kong, China, 2007: 1571–1576.
    [11]
    MARANÒ S, GIFFORD W M, WYMEERSCH H, et al. NLOS identification and mitigation for localization based on UWB experimental data[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(7): 1026–1035. doi: 10.1109/JSAC.2010.100907
    [12]
    SHAFI M, ZHANG Jianhua, TATARIA H, et al. Microwave vs. millimeter-wave propagation channels: Key differences and impact on 5G cellular systems[J]. IEEE Communications Magazine, 2018, 56(12): 14–20. doi: 10.1109/MCOM.2018.1800255
    [13]
    SUN Shu, RAPPAPORT T S, HEATH R W, et al. Mimo for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?[J]. IEEE Communications Magazine, 2014, 52(12): 110–121. doi: 10.1109/MCOM.2014.6979962
    [14]
    LIANG Xiaolin, JIN Yiheng, ZHANG Hao, et al. NLOS identification and machine learning methods for predicting the outcome of 60GHz ranging system[J]. Chinese Journal of Electronics, 2018, 27(1): 175–182. doi: 10.1049/cje.2017.11.003
    [15]
    MALTSEV A. 802.11-09/0334r8 Channel models for 60 GHz WLAN systems[S]. New York: IEEE, 2010.
    [16]
    MALTSEV A, MASLENNIKOV R, SEVASTYANOV A, et al. Experimental investigations of 60 GHz WLAN systems in office environment[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(8): 1488–1499. doi: 10.1109/JSAC.2009.091018
    [17]
    LYU Pengfei, BENLARBI-DELAÏ A, REN Zhuoxiang, et al. Angular clustering of millimeter-wave propagation channels with watershed transformation[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1279–1290. doi: 10.1109/TAP.2021.3119051
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (290) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return