Citation: | LÜ Pengfei, SARRAZIN Julien, HUANG Mo. Identification of LOS Clusters in Power Angular Spectrum for Indoor Localization Compatible with Communication at Millimeter Band[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2467-2475. doi: 10.11999/JEIT220786 |
[1] |
OBEIDAT H, SHUAIEB W, OBEIDAT O, et al. A review of indoor localization techniques and wireless technologies[J]. Wireless Personal Communications, 2021, 119(1): 289–327. doi: 10.1007/s11277-021-08209-5
|
[2] |
RIDOLFI M, KAYA A, BERKVENS R, et al. Self-calibration and collaborative localization for UWB positioning systems: A survey and future research directions[J]. ACM Computing Surveys, 2022, 54(4): 88. doi: 10.1145/3448303
|
[3] |
IEEE. 802.11ad-2012 Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 3: Enhancements for very high throughput in the 60 GHz band[S]. New York: IEEE, 2012.
|
[4] |
IEEE. 802.11ay-2021 Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 2: Enhanced throughput for operation in license-exempt bands above 45 GHz[S]. New York: IEEE, 2021.
|
[5] |
International Telecommunication Union. Recommendation P. 676-6: Attenuation by atmospheric gases[R]. ITU, 2005.
|
[6] |
JAFARI A, MAVRIDIS T, PETRILLO L, et al. UWB interferometry TDOA estimation for 60-GHz OFDM communication systems[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1438–1441. doi: 10.1109/LAWP.2015.2512327
|
[7] |
DE LIMA C, BELOT D, BERKVENS R, et al. Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges[J]. IEEE Access, 2021, 9: 26902–26925. doi: 10.1109/ACCESS.2021.3053486
|
[8] |
XIAO Zhiqiang and ZENG Yong. An overview on integrated localization and communication towards 6G[J]. Science China Information Sciences, 2022, 65(3): 131301. doi: 10.1007/s11432-020-3218-8
|
[9] |
YANG Tian, CABANI A, and CHAFOUK H. A survey of recent indoor localization scenarios and methodologies[J]. Sensors, 2021, 21(23): 8086. doi: 10.3390/s21238086
|
[10] |
GUVENC I, CHONG C C, and WATANABE F. NLOS identification and mitigation for UWB localization systems[C]. IEEE Wireless Communications & Networking Conference, Hong Kong, China, 2007: 1571–1576.
|
[11] |
MARANÒ S, GIFFORD W M, WYMEERSCH H, et al. NLOS identification and mitigation for localization based on UWB experimental data[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(7): 1026–1035. doi: 10.1109/JSAC.2010.100907
|
[12] |
SHAFI M, ZHANG Jianhua, TATARIA H, et al. Microwave vs. millimeter-wave propagation channels: Key differences and impact on 5G cellular systems[J]. IEEE Communications Magazine, 2018, 56(12): 14–20. doi: 10.1109/MCOM.2018.1800255
|
[13] |
SUN Shu, RAPPAPORT T S, HEATH R W, et al. Mimo for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?[J]. IEEE Communications Magazine, 2014, 52(12): 110–121. doi: 10.1109/MCOM.2014.6979962
|
[14] |
LIANG Xiaolin, JIN Yiheng, ZHANG Hao, et al. NLOS identification and machine learning methods for predicting the outcome of 60GHz ranging system[J]. Chinese Journal of Electronics, 2018, 27(1): 175–182. doi: 10.1049/cje.2017.11.003
|
[15] |
MALTSEV A. 802.11-09/0334r8 Channel models for 60 GHz WLAN systems[S]. New York: IEEE, 2010.
|
[16] |
MALTSEV A, MASLENNIKOV R, SEVASTYANOV A, et al. Experimental investigations of 60 GHz WLAN systems in office environment[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(8): 1488–1499. doi: 10.1109/JSAC.2009.091018
|
[17] |
LYU Pengfei, BENLARBI-DELAÏ A, REN Zhuoxiang, et al. Angular clustering of millimeter-wave propagation channels with watershed transformation[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1279–1290. doi: 10.1109/TAP.2021.3119051
|