Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LIU Jie, WANG Yue, TIAN Ming. Dynamic Gesture Recognition Network Based on Multiscale Spatiotemporal Feature Fusion[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2614-2622. doi: 10.11999/JEIT220758
Citation: LIU Jie, WANG Yue, TIAN Ming. Dynamic Gesture Recognition Network Based on Multiscale Spatiotemporal Feature Fusion[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2614-2622. doi: 10.11999/JEIT220758

Dynamic Gesture Recognition Network Based on Multiscale Spatiotemporal Feature Fusion

doi: 10.11999/JEIT220758
Funds:  The Natural Science Foundation of Heilongjiang Province (LH2019E067)
  • Received Date: 2022-06-13
  • Rev Recd Date: 2022-10-20
  • Available Online: 2022-10-26
  • Publish Date: 2023-07-10
  • Because of the time complexity and space complexity of dynamic gesture data, traditional machine learning algorithms are difficult to extract accurate gesture features; The existing dynamic gesture recognition algorithms have complex network design, large amount of parameters and insufficient gesture feature extraction. To solve the above problems, a multiscale spatiotemporal feature fusion network based on Convolutional vision Transformer(CvT)is proposed. Firstly, the CvT network used in the field of image classification is introduced into the field of dynamic gesture classification. The CvT network is used to extract the spatial features of a single gesture image, and fuse the shallow features and deep features of different spatial scales. Secondly, a multi time scale aggregation module is designed to extract the spatio-temporal features of dynamic gestures. The CvT network is combined with the multi time scale aggregation module to suppress invalid features. Finally, in order to make up for the deficiency of dropout layer in CvT network, r-drop model is applied to multi-scale spatiotemporal feature fusion network. The experimental results on Jester dataset show that the proposed method is superior to the existing dynamic gesture recognition methods in recognition rate, and the recognition rate on Jester dataset reaches 92.26%.
  • loading
  • [1]
    张淑军, 张群, 李辉. 基于深度学习的手语识别综述[J]. 电子与信息学报, 2020, 42(4): 1021–1032. doi: 10.11999/JEIT190416

    ZHANG Shujun, ZHANG Qun, and LI Hui. review of sign language recognition based on deep learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1021–1032. doi: 10.11999/JEIT190416
    [2]
    ASADI-AGHBOLAGHI M, CLAPÉS A, BELLANTONIO M, et al. A survey on deep learning based approaches for action and gesture recognition in image sequences[C]. The 12th IEEE International Conference on Automatic Face & Gesture Recognition, Washington, USA, 2017: 476–483.
    [3]
    KOLLER O, NEY H, and BOWDEN R. Deep hand: How to train a CNN on 1 million hand images when your data is continuous and weakly labelled[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 3793–3802.
    [4]
    WU J, ISHWAR P, and KONRAD J. Two-stream CNNs for gesture-based verification and identification: Learning user style[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, USA, 2016: 110–118.
    [5]
    JI Shuiwang, XU Wei, YANG Ming, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221–231. doi: 10.1109/TPAMI.2012.59
    [6]
    HUANG Jie, ZHOU Wengang, LI Houqiang, et al. Sign language recognition using 3D convolutional neural networks[C] Proceedings of 2015 IEEE International Conference on Multimedia and Expo, Turin, Italy, 2015: 1–6.
    [7]
    LIU Zhi, ZHANG Chenyang, and TIAN Yingli. 3D-based deep convolutional neural network for action recognition with depth sequences[J]. Image and Vision Computing, 2016, 55(2): 93–100. doi: 10.1016/j.imavis.2016.04.004
    [8]
    王粉花, 张强, 黄超, 等. 融合双流三维卷积和注意力机制的动态手势识别[J]. 电子与信息学报, 2021, 43(5): 1389–1396. doi: 10.11999/JEIT200065

    WANG Fenhua, ZHANG Qiang, HUANG Chao, et al. Dynamic gesture recognition combining two-stream 3D convolution with attention mechanisms[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1389–1396. doi: 10.11999/JEIT200065
    [9]
    TRAN D, RAY J, SHOU Zheng, et al. ConvNet architecture search for spatiotemporal feature learning[EB/OL]. https://arxiv.org/abs/1708.05038, 2017.
    [10]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [11]
    TRAN D, WANG Heng, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6450–6459.
    [12]
    FEICHTENHOFER C, FAN Haoqi, MALIK J, et al. SlowFast networks for video recognition[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6201–6210.
    [13]
    ZHANG Can, ZOU Yuexian, CHEN Guang, et al. PAN: Towards fast action recognition via learning persistence of appearance[EB/OL].https://arxiv.org/abs/2008.03462, 2020.
    [14]
    胡凯, 陈旭, 朱俊, 等. 基于多尺度3D卷积神经网络的行为识别方法[J]. 重庆邮电大学学报:自然科学版, 2021, 33(6): 970–976. doi: 10.3979/j.issn.1673-825X.201910240366

    HU Kai, CHEN Xu, ZHU Jun, et al. Multiscale 3D convolutional neural network for action recognition[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2021, 33(6): 970–976. doi: 10.3979/j.issn.1673-825X.201910240366
    [15]
    GAO Zan, GUO Leming, GUAN Weili, et al. A pairwise attentive adversarial spatiotemporal network for cross-domain few-shot action recognition-R2[J]. IEEE Transactions on Image Processing, 2021, 30: 767–782. doi: 10.1109/TIP.2020.3038372
    [16]
    毛力, 张艺楠, 孙俊. 融合注意力与时域多尺度卷积的手势识别算法[J]. 计算机应用研究, 2022, 39(7): 2196–2202. doi: 10.19734/j.issn.1001-3695.2021.11.0620

    MAO Li, ZHANG Yinan, and SUN Jun. Gesture recognition algorithm combining attention and time-domain multiscale convolution[J]. Application Research of Computers, 2022, 39(7): 2196–2202. doi: 10.19734/j.issn.1001-3695.2021.11.0620
    [17]
    SHARIR G, NOY A, and ZELNIK-MANOR L. An image is worth 16x16 words, what is a video worth?[EB/OL]. https://arxiv.org/abs/2103.13915, 2021.
    [18]
    DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. https://arxiv.org/abs/2010.11929, 2020.
    [19]
    WU Haiping, XIAO Bin, CODELLA N, et al. CvT: Introducing convolutions to vision transformers[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021.
    [20]
    LIANG Xiaobo, WU Lijun, LI Juntao, et al. R-Drop: Regularized dropout for neural networks[C/OL]. Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems, 2021.
    [21]
    谢昭, 周义, 吴克伟, 等. 基于时空关注度LSTM的行为识别[J]. 计算机学报, 2021, 44(2): 261–274. doi: 10.11897/SP.J.1016.2021.00261

    XIE Zhao, ZHOU Yi, WU Kewei, et al. Activity recognition based on spatial-temporal attention LSTM[J]. Chinese Journal of Computers, 2021, 44(2): 261–274. doi: 10.11897/SP.J.1016.2021.00261
    [22]
    SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM Network: A machine learning approach for precipitation nowcasting[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 802–810.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (457) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return