Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
BIE Bowen, LIU Jiang, SUN Guangcai, WANG Di, XING Mengdao. Low-orbit Bistatic Frequency Modulated Continuous Wave SAR Imaging Method Based on Singular Value Decomposition[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2502-2510. doi: 10.11999/JEIT220757
Citation: BIE Bowen, LIU Jiang, SUN Guangcai, WANG Di, XING Mengdao. Low-orbit Bistatic Frequency Modulated Continuous Wave SAR Imaging Method Based on Singular Value Decomposition[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2502-2510. doi: 10.11999/JEIT220757

Low-orbit Bistatic Frequency Modulated Continuous Wave SAR Imaging Method Based on Singular Value Decomposition

doi: 10.11999/JEIT220757
Funds:  The National Natural Science Foundation Youth Project of China (62001353)
  • Received Date: 2022-06-13
  • Rev Recd Date: 2022-10-20
  • Available Online: 2022-10-25
  • Publish Date: 2023-07-10
  • The imaging method of low-orbit bistatic SAR based on Frequency Modulated Continuous Wave (FMCW) signal is studied in this paper. The spaceborne bistatic model has the feature of transceiver separation and flexible structure. The nonlinear motion trajectory and bistatic slant range history are not conducive to the derivation and analysis of signal spectrum. The signal is constructed by a fourth-order polynomial slant range model. The expression of the two-dimensional spectrum of the signal is obtained by the method of series reversion. The spatial variation effect of the high-order polynomial coefficients is analyzed in detail. The range migration term is compensated in frequency domain. The azimuth phase is processed by the Singular Value Decomposition (SVD) method. Then the azimuth spectrum is divided into Doppler focusing terms and azimuth variation terms. A nonlinear azimuth scaling function is introduced. The azimuth variation can be completely corrected by two consecutive interpolations and resampling. The validity of the proposed method is verified by the simulation experiments.
  • loading
  • [1]
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 123–182.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Image Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 123–182.
    [2]
    LOFFELD O, NIES H, PETERS V, et al. Models and useful relations for bistatic SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2031–2038. doi: 10.1109/TGRS.2004.835295
    [3]
    NEO Y L, WONG F H, and CUMMING I G. Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 14–21. doi: 10.1109/TGRS.2007.909090
    [4]
    LIU Wenkang, SUN Guangcai, XING Mengdao, et al. Focusing of MEO SAR data based on principle of optimal imaging coordinate system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5477–5489. doi: 10.1109/TGRS.2020.2966581
    [5]
    LIU Wenkang, SUN Guangcai, XING Mengdao, et al. 2-D beam steering method for squinted high-orbit SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 4827–4840. doi: 10.1109/TGRS.2020.3015904
    [6]
    ZHANG Yixin and FANG Lili. Imaging for bistatic airborne frequency modulated continuous wave SAR[C]. 2019 International Conference on Electronic Engineering and Informatics, Nanjing, China, 2019: 155–158.
    [7]
    BIE Bowen, QUAN Yinghui, LIU Wenkang, et al. A modified range model and doppler resampling based imaging algorithm for high squint SAR on maneuvering platforms[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1923–1927. doi: 10.1109/LGRS.2019.2959660
    [8]
    李根, 马彦恒, 侯建强, 等. 基于Keystone变换和扰动重采样的机动平台大斜视SAR成像方法[J]. 电子与信息学报, 2020, 42(10): 2485–2492. doi: 10.11999/JEIT190831

    LI Gen, MA Yanheng, HOU Jianqiang, et al. Maneuvering platform high-squint SAR imaging method based on keystone transform and perturbation resampling[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2485–2492. doi: 10.11999/JEIT190831
    [9]
    CHEN Jianlai, SUN Guangcai, WANG Yong, et al. A TSVD-NCS algorithm in range-doppler domain for geosynchronous synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1631–1635. doi: 10.1109/LGRS.2016.2599224
    [10]
    LIU Yue, DENG Yunkai, WANG R, et al. Bistatic FMCW SAR signal model and imaging approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 2017–2028. doi: 10.1109/TAES.2013.6558035
    [11]
    梁毅, 王虹现, 邢孟道, 等. 基于FMCW的大斜视SAR成像研究[J]. 电子与信息学报, 2009, 31(4): 776–780. doi: 10.3724/SP.J.1146.2007.01851

    LIANG Yi, WANG Hongxian, XING Mengdao, et al. Imaging study of high squint SAR based on FMCW[J]. Journal of Electronics &Information Technology, 2009, 31(4): 776–780. doi: 10.3724/SP.J.1146.2007.01851
    [12]
    NEO Y L, WONG F, and CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93–96. doi: 10.1109/LGRS.2006.885862
    [13]
    王开民. 调频连续波无人机SAR动目标成像研究[D]. [硕士论文], 电子科技大学, 2020.

    WANG Kaimin. Research on moving target imaging of FMCW SAR mounted on unmanned aerial vehicle[D]. [Master dissertation], University of Electronic Science and Technology, 2020.
    [14]
    BIE Bowen, QUAN Yinghui, XU Kaijie, et al. High-speed maneuvering platform SAR imaging with optimal beam steering control[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216012. doi: 10.1109/TGRS.2021.3121427
    [15]
    游冬, 孙光才, 李亚超, 等. 地球同步轨道SAR两维奇异值分解成像方法[J]. 系统工程与电子技术, 2018, 40(10): 2200–2206. doi: 10.3969/j.issn.1001-506X.2018.10.07

    YOU Dong, SUN Guangcai, LI Yachao, et al. Two-dimension SVD imaging method for GEO SAR[J]. Systems Engineering and Electronics, 2018, 40(10): 2200–2206. doi: 10.3969/j.issn.1001-506X.2018.10.07
    [16]
    TANG Wanru, HUANG Bang, ZHANG Shunsheng, et al. Focusing of spaceborne SAR data using the improved nonlinear chirp scaling algorithm[C]. 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 6555–6558.
    [17]
    SUN Guangcai, CHEN Jianlai, YANG Jun, et al. A 2-D space-variant chirp scaling algorithm for GEO SAR[C]. The 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1–4.
    [18]
    XIONG Yi, LIANG Buge, YU Hanwen, et al. Processing of bistatic SAR data with nonlinear trajectory using a controlled-SVD algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5750–5759. doi: 10.1109/JSTARS.2021.3084619
    [19]
    SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868–4880. doi: 10.1109/TGRS.2013.2285721
    [20]
    FENG Lipeng, WANG Hui, ZHENG Shichao, et al. Spaceborne bistatic FMCW SAR imaging method based on FS algorithm[C]. The 2021 2nd China International SAR Symposium, Shanghai, China, 2021: 1–5.
    [21]
    MEI Haiwen, LI Yachao, XING Mengdao, et al. A frequency-domain imaging algorithm for translational variant bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1502–1515. doi: 10.1109/TGRS.2019.2943743
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (309) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return