Citation: | LI Yanting, WANG Shuai, JIN Junwei, MA Jiangtao, CHEN Xueyan, CHEN Junlong. Imbalanced Classification Based on Weighted Regularization Collaborative Representation[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2571-2579. doi: 10.11999/JEIT220753 |
[1] |
SHU Ting, ZHANG B, and TANG Yuanyan. Sparse supervised representation-based classifier for uncontrolled and imbalanced classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(8): 2847–2856. doi: 10.1109/TNNLS.2018.2884444
|
[2] |
JIN Junwei, LI Yanting, and CHEN C L P. Pattern classification with corrupted labeling via robust broad learning system[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(10): 4959–4971. doi: 10.1109/TKDE.2021.3049540
|
[3] |
JIN Junwei, LI Yanting, YANG Tiejun, et al. Discriminative group-sparsity constrained broad learning system for visual recognition[J]. Information Sciences, 2021, 576: 800–818. doi: 10.1016/j.ins.2021.06.008
|
[4] |
JIN Junwei, QIN Zhenhao, YU Dengxiu, et al. Regularized discriminative broad learning system for image classification[J]. Knowledge-Based Systems, 2022, 251: 109306. doi: 10.1016/j.knosys.2022.109306
|
[5] |
ZHU Zonghai, WANG Zhe, LI Dongdong, et al. Globalized multiple balanced subsets with collaborative learning for imbalanced data[J]. IEEE Transactions on Cybernetics, 2022, 52(4): 2407–2417. doi: 10.1109/TCYB.2020.3001158
|
[6] |
ZHU Zonghai, WANG Zhe, LI Dongdong, et al. Geometric structural ensemble learning for imbalanced problems[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1617–1629. doi: 10.1109/TCYB.2018.2877663
|
[7] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. doi: 10.1613/jair.953
|
[8] |
HE Haibo, BAI Yang, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]. Proceedings of the International Joint Conference on Neural Networks, Hong Kong, China, 2008: 1322–1328.
|
[9] |
BARUA S, ISLAM M M, YAO Xin, et al. MWMOTE: Majority weighted minority oversampling technique for imbalanced data set learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2): 405–425. doi: 10.1109/TKDE.2012.232
|
[10] |
BATISTA G E A P A, PRATI R C, and MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 20–29. doi: 10.1145/1007730.1007735
|
[11] |
DOUZAS G and BACAO F. Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE[J]. Information Sciences, 2019, 501: 118–135. doi: 10.1016/j.ins.2019.06.007
|
[12] |
WANG Xinyue, XU Jian, ZENG Tieyong, et al. Local distribution-based adaptive minority oversampling for imbalanced data classification[J]. Neurocomputing, 2021, 422: 200–213. doi: 10.1016/j.neucom.2020.05.030
|
[13] |
CHEN Baiyun, XIA Shuyin, CHEN Zizhong, et al. RSMOTE: A self-adaptive robust SMOTE for imbalanced problems with label noise[J]. Information Sciences, 2021, 553: 397–428. doi: 10.1016/j.ins.2020.10.013
|
[14] |
XIE Yuxi, QIU Min, ZHANG Haibo, et al. Gaussian distribution based oversampling for imbalanced data classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(2): 667–679. doi: 10.1109/TKDE.2020.2985965
|
[15] |
CAO Changjie, CUI Zongyong, WANG Liying, et al. Cost-sensitive awareness-based SAR automatic target recognition for imbalanced data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–16. doi: 10.1109/TGRS.2021.3068447
|
[16] |
ZONG Weiwei, HUANG Guangbin, and CHEN Yiqiang. Weighted extreme learning machine for imbalance learning[J]. Neurocomputing, 2013, 101: 229–242. doi: 10.1016/j.neucom.2012.08.010
|
[17] |
LIU Zheng, JIN Wei, and MU Ying. Variances-constrained weighted extreme learning machine for imbalanced classification[J]. Neurocomputing, 2020, 403: 45–52. doi: 10.1016/j.neucom.2020.04.052
|
[18] |
ZHANG Lei, YANG Meng, and FENG Xiangchu. Sparse representation or collaborative representation: Which helps face recognition[C]. Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 2011: 471–478.
|
[19] |
YUAN Haoliang, LI Xuecong, XU Fangyuan, et al. A collaborative-competitive representation based classifier model[J]. Neurocomputing, 2018, 275: 627–635. doi: 10.1016/j.neucom.2017.09.022
|
[20] |
LI Yanting, JIN Junwei, ZHAO Liang, et al. A neighborhood prior constrained collaborative representation for classification[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2021, 19(2): 2050073. doi: 10.1142/S0219691320500733
|
[21] |
KHAN M M R, ARIF R B, SIDDIQUE M A B, et al. Study and observation of the variation of accuracies of KNN, SVM, LMNN, ENN algorithms on eleven different datasets from UCI machine learning repository[C]. Proceedings of the 4th International Conference on Electrical Engineering and Information & Communication Technology. Dhaka, Bangladesh, 2018: 124–129.
|
[22] |
LIU Xuying, WU Jianxin, and ZHOU Zhihua. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(2): 539–550. doi: 10.1109/TSMCB.2008.2007853
|
[23] |
JEDRZEJOWICZ J and JEDRZEJOWICZ P. GEP-based classifier for mining imbalanced data[J]. Expert Systems with Applications, 2021, 164: 114058. doi: 10.1016/j.eswa.2020.114058
|