Citation: | SUN Yi, ZHOU Chuanxin, WANG Degang, YANG Fan, GAO Qi. Efficient Grouping Secure Aggregation Method Based on Binary Tree[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2546-2553. doi: 10.11999/JEIT220745 |
[1] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, USA, 2017: 1273–1282.
|
[2] |
IMTEAJ A, THAKKER U, WANG Shiqiang, et al. A survey on federated learning for resource-constrained IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(1): 1–24. doi: 10.1109/jiot.2021.3095077
|
[3] |
周传鑫, 孙奕, 汪德刚, 等. 联邦学习研究综述[J]. 网络与信息安全学报, 2021, 7(5): 77–92. doi: 10.11959/j.issn.2096-109x.2021056
ZHOU Chuanxin, SUN Yi, WANG Degang, et al. Survey of federated learning research[J]. Chinese Journal of Network and Information Security, 2021, 7(5): 77–92. doi: 10.11959/j.issn.2096-109x.2021056
|
[4] |
SO J, GÜLER B, and AVESTIMEHR A S. Turbo-aggregate: Breaking the quadratic aggregation barrier in secure federated learning[J]. IEEE Journal on Selected Areas in Information Theory, 2021, 2(1): 479–489. doi: 10.1109/jsait.2021.3054610
|
[5] |
SYTA E, JOVANOVIC P, KOGIAS E K, et al. Scalable bias-resistant distributed randomness[C]. The 38th IEEE Symposium on Security and Privacy (SP), San Jose, USA, 2017: 444–460.
|
[6] |
DIFFIE W and HELLMAN M. New directions in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22(6): 644–654. doi: 10.1109/tit.1976.1055638
|
[7] |
BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for federated learning on user-held data[C]. The 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 2016: 1–5.
|
[8] |
BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]. The 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 1175–1191.
|
[9] |
MONZ T, NIGG D, MARTINEZ E A, et al. Realization of a scalable Shor algorithm[J]. Science, 2016, 351(6277): 1068–1070. doi: 10.1126/science.aad9480
|
[10] |
ALKIM E, DUCAS L, PÖPPELMANN T, et al. Post-quantum key exchange: A new hope[C]. The 25th USENIX Conference on Security Symposium, Austin, USA, 2016: 327–343.
|
[11] |
FRANCESCHETTI M and MINERO P. Elements of information theory for networked control systems[M]. COMO G, BERNHARDSSON B, and RANTZER A. Information and Control in Networks. Cham: Springer, 2014: 3–37.
|
[12] |
BELL J H, BONAWITZ K A, GASCÓN A, et al. Secure single-server aggregation with (poly)logarithmic overhead[C]. The 2020 ACM SIGSAC Conference on Computer and Communications Security, New York, USA, 2020: 1253–1269.
|
[13] |
CHOI B, SOHN J, HAN Dongjun, et al. Communication-computation efficient secure aggregation for federated learning[J]. arXiv: 2012.05433, 2020.
|
[14] |
FEREIDOONI H, MARCHAL S, MIETTINEN M, et al. SAFELearn: Secure aggregation for private federated learning[C]. 2021 IEEE Security and Privacy Workshops (SPW), San Francisco, USA, 2021: 56–62.
|
[15] |
HE Chaoyang, ANNAVARAM M, and AVESTIMEHR S. Group knowledge transfer: Collaborative training of large CNNs on the edge[J]. arXiv: 2007.14513, 2020.
|
[16] |
HE Chaoyang, LI Songze, SO J, et al. FedML: A research library and benchmark for federated machine learning[J]. arXiv: 2007.13518, 2020.
|
[17] |
DALCÍN L, PAZ R, and STORTI M. MPI for python[J]. Journal of Parallel and Distributed Computing, 2005, 65(9): 1108–1115. doi: 10.1016/j.jpdc.2005.03.010
|