Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
HU Shicheng, YANG Liu, KANG Kai, QIAN Hua. Deep Alternating Direction Multiplier Method Network for Event Detection[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2634-2641. doi: 10.11999/JEIT220744
Citation: HU Shicheng, YANG Liu, KANG Kai, QIAN Hua. Deep Alternating Direction Multiplier Method Network for Event Detection[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2634-2641. doi: 10.11999/JEIT220744

Deep Alternating Direction Multiplier Method Network for Event Detection

doi: 10.11999/JEIT220744
Funds:  The National Natural Science Foundation of China (61971286), The National Key Research and Development Program of China (2020YFB2205603), The Science and Technology Commission Foundation of Shanghai (19DZ1204300)
  • Received Date: 2022-06-07
  • Rev Recd Date: 2022-10-05
  • Available Online: 2022-10-11
  • Publish Date: 2023-07-10
  • Considering the Event Detection Problem (EDP) in the large-scale Wireless Sensor Network (WSN), the conventional methods rely generally on some prior information, which obstacles the actual application. In this paper, a deep learning-based algorithm, named as Alternating Direction Multiplier Method Network (ADMM-Net), is proposed for the EDP. Firstly, the low rank and sparse matrix decomposition is adopted to capture the spatial-temporal correlation of events. After that, the EDP is formulated as a constrained optimization problem and solved by the Alternating Direction Multiplier Method (ADMM). However, the optimization algorithm suffers from low convergence. Besides, the algorithm’s performance relies heavily on the careful selection of prior parameters. By adopting the conception of “unfolding” in deep learning field, a deep learning network which is named ADMM-Net, is proposed for the EDP in this paper. The ADMM-Net is obtained by unfolding the ADMM algorithm. The ADMM-Net is with fixed layers, whose parameters can be trained via supervised learning. No prior information is required. Compared to the conventional methods, the proposed ADMM-Net does not require any prior information while enjoying fast convergence. Simulation results on both synthesis and realistic datasets verify the effectiveness of the proposed ADMM-Net.
  • loading
  • [1]
    STOYANOVA M, NIKOLOUDAKIS Y, PANAGIOTAKIS S, et al. A survey on the internet of things (IoT) forensics: Challenges, approaches, and open issues[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1191–1221. doi: 10.1109/COMST.2019.2962586
    [2]
    JAVADI S H. Detection over sensor networks: A tutorial[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(3): 2–18. doi: 10.1109/MAES.2016.140128
    [3]
    ARAD J, HOUSH M, PERELMAN L, et al. A dynamic thresholds scheme for contaminant event detection in water distribution systems[J]. Water Research, 2013, 47(5): 1899–1908. doi: 10.1016/j.watres.2013.01.017
    [4]
    LIU Li, HAN Guangjie, HE Yu, et al. Fault-tolerant event region detection on trajectory pattern extraction for industrial wireless sensor networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2072–2080. doi: 10.1109/TII.2019.2933238
    [5]
    YU Manzhu, BAMBACUS M, CERVONE G, et al. Spatiotemporal event detection: A review[J]. International Journal of Digital Earth, 2020, 13(12): 1339–1365. doi: 10.1080/17538947.2020.1738569
    [6]
    YIN Jie, HU D H, and YANG Qiang. Spatio-temporal event detection using dynamic conditional random fields[C]. The 21st International Joint Conference on Artificial Intelligence, Pasadena, USA, 2009: 1321–1326.
    [7]
    GRANJON P. The CuSum algorithm-a small review[EB/OL].https://hal.archives-ouvertes.fr/hal-00914697, 2013.
    [8]
    KRISHNAMACHARIB and IYENGAR S. Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor networks[J]. IEEE Transactions on Computers, 2004, 53(3): 241–250. doi: 10.1109/TC.2004.1261832
    [9]
    CHEN Xianda, KIM K T, and YOUN H Y. Integration of Markov random field with Markov chain for efficient event detection using wireless sensor network[J]. Computer Networks, 2016, 108: 108–119. doi: 10.1016/j.comnet.2016.07.004
    [10]
    WU Tao and CHENG Qi. Online dynamic event region detection using distributed sensor networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 393–405. doi: 10.1109/TAES.2013.120308
    [11]
    WANG T Y, YANG M H, and WU J Y. Distributed detection of dynamic event regions in sensor networks with a Gibbs field distribution and Gaussian corrupted measurements[J]. IEEE Transactions on Communications, 2016, 64(9): 3932–3945. doi: 10.1109/TCOMM.2016.2593467
    [12]
    WANG Jiejie and LIU Bin. Online fault-tolerant dynamic event region detection in sensor networks via trust model[C]. 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6.
    [13]
    CANDÈS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11. doi: 10.1145/1970392.1970395
    [14]
    GAO Lianru, HONG Danfeng, YAO Jing, et al. Spectral superresolution of multispectral imagery with joint sparse and low-rank learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2269–2280. doi: 10.1109/TGRS.2020.3000684
    [15]
    MONGA V, LI Yuelong, and ELDAR Y C. Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing[J]. IEEE Signal Processing Magazine, 2021, 38(2): 18–44. doi: 10.1109/MSP.2020.3016905
    [16]
    JOHNSTON J, LI Yinchuan, LOPS M, et al. ADMM-Net for communication interference removal in stepped-frequency radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 2818–2832. doi: 10.1109/TSP.2021.3076900
    [17]
    YANG Liu, WANG Haifeng, and QIAN Hua. An ADMM-ResNet for data recovery in wireless sensor networks with guaranteed convergence[J]. Digital Signal Processing, 2021, 111: 102956. doi: 10.1016/j.dsp.2020.102956
    [18]
    AYBAT N S and IYENGAR G. An alternating direction method with increasing penalty for stable principal component pursuit[J]. Computational Optimization and Applications, 2015, 61(3): 635–668. doi: 10.1007/s10589-015-9736-6
    [19]
    Intel Berkeley Research Lab. Intel lab data[EB/OL]. http://db.lcs.mit.edu/labdata/labdata.html, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (316) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return