Citation: | WANG Yang, YANG Mengyu, ZHAO Shoubo. Compressed Sensing Reconstruction of Hyperspectral Images Based on Adaptive Blocking[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2605-2613. doi: 10.11999/JEIT220738 |
[1] |
LIU Lei, SUN Min, REN Xiang, et al. Hyperspectral image quality based on convolutional network of multi-scale depth[J]. Journal of Visual Communication and Image Representation, 2020, 71: 102721. doi: 10.1016/j.jvcir.2019.102721
|
[2] |
FABELO H, ORTEGA S, SZOLNA A, et al. In-vivo hyperspectral human brain image database for brain cancer detection[J]. IEEE Access, 2019, 7: 39098–39116. doi: 10.1109/ACCESS.2019.2904788
|
[3] |
王建成, 朱猛. 高光谱侦察技术的发展[J]. 航天电子对抗, 2019, 35(3): 37–45. doi: 10.16328/j.htdz8511.2019.03.009
WANG Jiancheng and ZHU Meng. Development status of hyperspectral reconnaissance[J]. Aerospace Electronic Warfare, 2019, 35(3): 37–45. doi: 10.16328/j.htdz8511.2019.03.009
|
[4] |
LU Bing, HE Yuhong, and DAO P D. Comparing the performance of multispectral and hyperspectral images for estimating vegetation properties[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1784–1797. doi: 10.1109/JSTARS.2019.2910558
|
[5] |
王立国, 王丽凤. 结合高光谱像素级信息和CNN的玉米种子品种识别模型[J]. 遥感学报, 2021, 25(11): 2234–2244.
WANG Liguo and WANG Lifeng. Variety identification model for maize seeds using hyperspectral pixel-level information combined with convolutional neural network[J]. National Remote Sensing Bulletin, 2021, 25(11): 2234–2244.
|
[6] |
邓亚美, 王秀娟, 杨敏莉, 等. 成像技术在食品安全与质量控制中的研究进展[J]. 色谱, 2020, 38(7): 741–749. doi: 10.3724/SP.J.1123.202
DENG Yamei, WANG Xiujuan, YANG Minli, et al. Research advances in imaging technology for food safety and quality control[J]. Chinese Journal of Chromatography, 2020, 38(7): 741–749. doi: 10.3724/SP.J.1123.202
|
[7] |
HU Meiqi, WU Chen, ZHANG Liangpei, et al. Hyperspectral anomaly change detection based on autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3750–3762. doi: 10.1109/JSTARS.2021.3066508
|
[8] |
LUO Jiqiang, XU Tingfa, PAN Teng, et al. An efficient compression method of hyperspectral images based on compressed sensing and joint Optimization[J]. Integrated Ferroelectrics, 2020, 208(1): 194–205. doi: 10.1080/10584587.2020.1728625
|
[9] |
SUN Zheng and YAN Xiangyang. Image reconstruction based on compressed sensing for sparse-data endoscopic photoacoustic tomography[J]. Computers in Biology and Medicine, 2020, 116: 103587. doi: 10.1016/j.compbiomed.2019.103587
|
[10] |
LI Denghui and WANG Yanhong. Implementation of image resampling algorithm based on compressed sensing[J]. Journal of Physics:Conference Series, 2021, 1732: 012071. doi: 10.1088/1742-6596/1732/1/012071
|
[11] |
WANG Rongfang, QIN Yali, WANG Zhenbiao, et al. Group-based sparse representation for compressed sensing image reconstruction with joint regularization[J]. Electronics, 2022, 11(2): 182. doi: 10.3390/electronics11020182
|
[12] |
赵首博, 李秀红. 基于压缩感知的反射光谱重构算法研究[J]. 光谱学与光谱分析, 2021, 41(4): 1092–1096. doi: 10.3964/j.issn.1000-0593(2021)04-1092-05
ZHAO Shoubo and LI Xiuhong. Research on reflection spectrum reconstruction algorithm based on compressed sensing[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1092–1096. doi: 10.3964/j.issn.1000-0593(2021)04-1092-05
|
[13] |
WEI Ziran, ZHANG Jianlin, XU Zhiyong, et al. Optimization methods of compressively sensed image reconstruction based on single-pixel imaging[J]. Applied Sciences, 2020, 10(9): 3288.
|
[14] |
TAO Chenning, ZHU Huanzheng, SUN Peng, et al. Simultaneous coded aperture and dictionary optimization in compressive spectral imaging via coherence minimization[J]. Optics Express, 2020, 28(18): 26587–26600. doi: 10.1364/OE.396260
|
[15] |
ZHANG Hao, MA Xu, LAU D L, et al. Compressive spectral imaging based on hexagonal blue noise coded apertures[J]. IEEE Transactions on Computational Imaging, 2020, 6: 749–763. doi: 10.1109/TCI.2020.2979373
|
[16] |
ZHAO Yushi, HE Wenjun, LIU Zhiying, et al. Optical design of an offner coded aperture snapshot spectral imaging system based on dual-DMDs in the mid-wave infrared band[J]. Optics Express, 2021, 29(24): 39271–39283. doi: 10.1364/OE.444460
|
[17] |
WANG Zhongliang, HE Mi, YE Zhen, et al. Reconstruction of hyperspectral images from spectral compressed sensing based on a multitype mixing model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2304–2320. doi: 10.1109/JSTARS.2020.2994334
|
[18] |
谌德荣, 吕海波, 李秋富, 等. 分块压缩感知的全变差正则化重构算法[J]. 电子与信息学报, 2019, 41(9): 2217–2223. doi: 10.11999/JEIT180931
CHEN Derong, LÜ Haibo, LI Qiufu, et al. Total variation regularized reconstruction algorithms for block compressive sensing[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2217–2223. doi: 10.11999/JEIT180931
|
[19] |
DAI Guangzhi, HE Zhiyong, and SUN Hongwei. Ultrasonic block compressed sensing imaging reconstruction algorithm based on wavelet sparse representation[J]. Current Medical Imaging, 2020, 16(3): 262–272. doi: 10.2174/1573405615666191209151746
|
[20] |
ZHANG Zheng, BI Hongbo, KONG Xiaoxue, et al. Adaptive compressed sensing of color images based on salient region detection[J]. Multimedia Tools and Applications, 2020, 79(21): 14777–14791. doi: 10.1007/s11042-018-7062-6
|
[21] |
WANG Xiaodong, LI Yunhui, WANG Zhi, et al. Self-adaptive block-based compressed sensing imaging for remote sensing applications[J]. Journal of Applied Remote Sensing, 2020, 14(1): 016513. doi: 10.1117/1.JRS.14.016513
|
[22] |
KAZEMI V, SHAHZADI A, and BIZAKIi H K. Multifocus image fusion using adaptive block compressive sensing by combining spatial frequency[J]. Multimedia Tools and Applications, 2022, 81(11): 15153–15170. doi: 10.1007/s11042-022-12072-2
|