Citation: | KOU Farong, XIAO Wei, HE Haiyang, CHEN Ruochen. Research on Target Detection in Underground Coal Mines Based on Improved YOLOv5[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2642-2649. doi: 10.11999/JEIT220725 |
[1] |
LI Ailing, ZHANG Jixiong, ZHOU Nan, et al. A model for evaluating the production system of an intelligent mine based on unascertained measurement theory[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(2): 1865–1875. doi: 10.3233/JIFS-190329
|
[2] |
ZHANG Kexue, KANG Lei, CHEN Xuexi, et al. A review of intelligent unmanned mining current situation and development trend[J]. Energies, 2022, 15(2): 513. doi: 10.3390/en15020513
|
[3] |
HE Yunze, DENG Baoyuan, WANG Hongjin, et al. Infrared machine vision and infrared thermography with deep learning: A review[J]. Infrared Physics & Technology, 2021, 116: 103754. doi: 10.1016/j.infrared.2021.103754
|
[4] |
WEI Dong, WANG Zhongbin, SI Lei, et al. Online shearer-onboard personnel detection method for the intelligent fully mechanized mining face[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2022, 236(6): 3058–3072. doi: 10.1177/09544062211030973
|
[5] |
RYU J and KIM S. Data driven proposal and deep learning-based small infrared drone detection[J]. Journal of Institute of Control, Robotics and Systems, 2018, 24(12): 1146–1151. doi: 10.5302/J.ICROS.2018.18.0157
|
[6] |
FAN Tao. Research and realization of video target detection system based on deep learning[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2020, 18(1): 1941010. doi: 10.1142/S0219691319410108
|
[7] |
李宝奇, 黄海宁, 刘纪元, 等. 基于改进SSD的水下光学图像感兴趣目标检测算法研究[J]. 电子与信息学报, 2022, 44(10): 3372–3378. doi: 10.11999/JEIT210761
LI Baoqi, HUANG Haining, LIU Jiyuan, et al. Underwater optical image interested object detection model based on improved SSD[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3372–3378. doi: 10.11999/JEIT210761
|
[8] |
LI Xiaoyu, WANG Shuai, LIU Bin, et al. Improved YOLOv4 network using infrared images for personnel detection in coal mines[J]. Journal of Electronic Imaging, 2022, 31(1): 013017. doi: 10.1117/1.JEI.31.1.013017
|
[9] |
JIANG Daihong, DAI Lei, LI Dan, et al. Moving-object tracking algorithm based on PCA-SIFT and optimization for underground coal mines[J]. IEEE Access, 2019, 7: 35556–35563. doi: 10.1109/ACCESS.2019.2899362
|
[10] |
DU Yuxin, TONG Minming, ZHOU Lingling, et al. Edge detection based on Retinex theory and wavelet multiscale product for mine images[J]. Applied Optics, 2016, 55(34): 9625–9637. doi: 10.1364/AO.55.009625
|
[11] |
QIU Zhi, ZHAO Zuoxi, CHEN Shaoji, et al. Application of an improved YOLOv5 algorithm in real-time detection of foreign objects by ground penetrating radar[J]. Remote Sensing, 2022, 14(8): 1895. doi: 10.3390/RS14081895
|
[12] |
CUI Cheng, GAO Tingquan, WEI Shengyu, et al. PP-LCNet: A lightweight CPU convolutional neural network[J]. arXiv preprint arXiv: 2109.15099, 2021.
|
[13] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
|
[14] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
|
[15] |
BOCHKOVSKIY A, WANG C C Y, and LIAO H Y M. YoLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.
|
[16] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
|
[17] |
REDMON J and FARHADI A. YoLOv3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
|
[18] |
REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7263–7271.
|
[19] |
TAN Mingxing and LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019.
|
[20] |
HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019.
|