Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LI Yubo, CHEN Miao. Construction of Nearly Perfect Gaussian Integer Sequences[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1752-1758. doi: 10.11999/JEIT170844
Citation: LI Xingwang, LI Yancong, GAO Xiangchuan, YU Qingping, HUANG Gaojian. Outage Performance Analysis of Cognitive Radio Non-Orthogonal Multiple Access System under Non-ideal Conditions[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2415-2422. doi: 10.11999/JEIT220721

Outage Performance Analysis of Cognitive Radio Non-Orthogonal Multiple Access System under Non-ideal Conditions

doi: 10.11999/JEIT220721
Funds:  The Science and Technology Project of Henan Province (212102210557), The Doctoral Fund of Henan Polytechnic University (B2022-2), The Scientific Research Starting Project of SWPU (2021QHZ037), Guangdong Basic and Applied Basic Research Foundation (2022A1515010999), The Science and Technology Program of Guanzhou (202201011850), The Scientific Research Project of Education Department of Guangdong (2021KCXTD061)
  • Received Date: 2022-06-01
  • Rev Recd Date: 2022-08-31
  • Available Online: 2022-09-02
  • Publish Date: 2023-07-10
  • To meet the network requirements and improve the utilization of system spectrum, a Cognitive Radio Non-Orthogonal Multiple Access (CR-NOMA) technology is proposed. To investigate the system reliability, NonLinear Power Amplification (NLPA), incomplete Successive Interference Cancellation (ipSIC) and incomplete Channel State Information (CSI) are taken into account. The analytical expressions of system Outage Probability (OP) and system throughput are derived, and the expressions of outage probability under high SNR, high SNR approximation of outage probability under ideal state and diversity order are further analyzed. The simulation results show that: NLPA, ipSIC and channel estimation error parameters have negative effects on interrupt probability; The interrupt probability decreases with the increase of SNR until it converges to a fixed constant at a high SNR; Interruption probability will also change with the change of power distribution coefficient.
  • [1]
    CHOWDHURY M Z, SHAHJALAL M, AHMED S, et al. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[J]. IEEE Open Journal of the Communications Society, 2020, 1: 957–975. doi: 10.1109/OJCOMS.2020.3010270
    [2]
    DING Zhiguo, FAN Pingzhi, KARAGIANNIDIS G K, et al. NOMA assisted wireless caching: Strategies and performance analysis[J]. IEEE Transactions on Communications, 2018, 66(10): 4854–4876. doi: 10.1109/TCOMM.2018.2841929
    [3]
    LI Xingwang, ZHENG Yike, KHAN W U, et al. Physical layer security of cognitive ambient backscatter communications for green internet-of-things[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1066–1076. doi: 10.1109/TGCN.2021.3062060
    [4]
    ARZYKULOV S, TSIFTSIS T A, NAURYZBAYEV G, et al. Outage performance of cooperative underlay CR-NOMA with imperfect CSI[J]. IEEE Communications Letters, 2019, 23(1): 176–179. doi: 10.1109/LCOMM.2018.2878730
    [5]
    WEI Zhiqiang, GUO Jiajia, NG D W K, et al. Fairness comparison of uplink NOMA and OMA[C]. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–6.
    [6]
    唐伦, 李子煜, 管令进, 等. 异构云无线接入网下基于功率域NOMA的能效优化算法[J]. 电子与信息学报, 2021, 43(6): 1706–1714. doi: 10.11999/JEIT200327

    TANG Lun, LI Ziyu, GUAN Lingjin, et al. Energy efficiency optimization algorithm based On PD-NOMA under heterogeneous cloud radio access networks[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1706–1714. doi: 10.11999/JEIT200327
    [7]
    SHI Zheng, ZHANG Chenmeng, FU Yaru, et al. Achievable diversity order of HARQ-aided downlink NOMA systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 471–487. doi: 10.1109/TVT.2019.2950067
    [8]
    徐勇军, 刘子腱, 李国权, 等. 基于NOMA的无线携能D2D通信鲁棒能效优化算法[J]. 电子与信息学报, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175

    XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy efficiency optimization algorithm for NOMA-based D2D communication with simultaneous wireless information and power transfer[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175
    [9]
    ZHOU Fuhui, WU Yongpeng, LIANG Yingchang, et al. State of the art, taxonomy, and open issues on cognitive radio networks with NOMA[J]. IEEE Wireless Communications, 2018, 25(2): 100–108. doi: 10.1109/MWC.2018.1700113
    [10]
    LI Xingwang, ZHENG Yike, ALSHEHRI M D, et al. Cognitive AmBC-NOMA IoV-MTS networks with IQI: Reliability and security analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 2596–2607. doi: 10.1109/TITS.2021.3113995
    [11]
    BARIAH L, MUHAIDAT S, and AL-DWEIK A. Error Performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints[J]. IEEE Transactions on Communications, 2020, 68(2): 765–777. doi: 10.1109/TCOMM.2019.2921360
    [12]
    WEI Luwei, JING Tao, FAN Xin, et al. The secrecy analysis over physical layer in NOMA-enabled cognitive radio networks[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–6.
    [13]
    LV Lu, YANG Long, JIANG Hai, et al. When NOMA meets multiuser cognitive radio: Opportunistic cooperation and user scheduling[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 6679–6684. doi: 10.1109/TVT.2018.2805638
    [14]
    SANTELLA G and MAZZENGA F. A hybrid analytical-simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions[J]. IEEE Transactions on Vehicular Technology, 1998, 47(1): 142–151. doi: 10.1109/25.661041
    [15]
    LI Xingwang, LIU Meng, DENG Chao, et al. Joint effects of residual hardware impairments and channel estimation errors on SWIPT assisted cooperative NOMA networks[J]. IEEE Access, 2019, 7: 135499–135513. doi: 10.1109/ACCESS.2019.2942337
    [16]
    SINGYA P K, KUMAR N, BHATIA V, et al. Performance analysis of opportunistic two-way 3P-ANC multi-relay system with imperfect CSI and NLPA[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 206–212.
    [17]
    SINGYA P K, KUMAR N, BHATIA V, et al. On performance of hexagonal, cross, and rectangular QAM for multi-relay systems[J]. IEEE Access, 2019, 7: 60602–60616. doi: 10.1109/ACCESS.2019.2915375
    [18]
    王夕予, 许晓明, 陈亚军. 非理想连续干扰消除下非正交多址接入上行传输系统性能分析[J]. 电子与信息学报, 2019, 41(12): 2795–2801. doi: 10.11999/JEIT181165

    WANG Xiyu, YU Xiaoming, and CHEN Yajun. Performances analysis in uplink non-orthogonal multiple access system with imperfect successive interference cancellation[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2795–2801. doi: 10.11999/JEIT181165
    [19]
    LI Xingwang, WANG Qunshu, LIU Meng, et al. Cooperative wireless-powered NOMA Relaying for B5G IoT networks with hardware impairments and channel estimation errors[J]. IEEE Internet of Things Journal, 2021, 8(7): 5453–5467. doi: 10.1109/JIOT.2020.3029754
    [20]
    LI Xingwang, LI Jingjing, LIU Yuanwei, et al. Residual transceiver hardware impairments on cooperative NOMA networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 680–695. doi: 10.1109/TWC.2019.2947670
    [21]
    HASNA M O and ALOUINI M S. A performance study of dual-hop transmissions with fixed gain relays[C]. 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 2003, IV-189.
    [22]
    BALTI E and GUIZANI M. Impact of non-linear high-power amplifiers on cooperative relaying systems[J]. IEEE Transactions on Communications, 2017, 65(10): 4163–4175. doi: 10.1109/TCOMM.2017.2722499
    [23]
    KUMAR D, SINGYA P K, and BHATIA V. Performance analysis of hybrid two-way relay network with NLPA and hardware impairments[C]. 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China 2021: 1–6.
    [24]
    SIMMONS D E and COON J P. Two-Way OFDM-based nonlinear amplify-and-forward relay systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3808–3812. doi: 10.1109/TVT.2015.2436713
  • Cited by

    Periodical cited type(19)

    1. 孙顺远,魏志涛. 基于二次移动平均法估计背景光照的二值化方法. 计算机与数字工程. 2024(06): 1830-1836 .
    2. 赵孔卫,徐广标. 基于像素分析的针织面料卷边性评价研究. 针织工业. 2024(10): 11-14 .
    3. 卢晓波,徐海,朱俊召,张宇,谭健,高冠男,胡军华,林龙. 基于机器视觉的加热卷烟烟支端部质量检测系统设计. 轻工学报. 2024(06): 101-107+115 .
    4. 韩海豹,化荣,张虎,陈杰. 量产活禽(肉鸡)智能化运输装备控制系统的设计. 农业技术与装备. 2023(01): 20-22 .
    5. 支亚京,汤宁,吴兴洋,汪华,胡兴炜,张军. 基于支持向量机的气温自记纸图像数字化. 计算机技术与发展. 2023(10): 216-220 .
    6. 魏兴凯,蒋峥,傅呈勋,刘斌. 基于光照影响因子的动态Niblack算法研究及应用. 计算机工程与设计. 2022(04): 1066-1073 .
    7. 徐浩,章明希. 高精密齿轮小缺陷的智能视觉测量. 兵器材料科学与工程. 2021(01): 83-87 .
    8. 贺欢,吐尔洪江·阿布都克力木,何笑. 一种基于MALLAT算法的图像去雾方法. 新疆师范大学学报(自然科学版). 2020(01): 23-27 .
    9. 赵琛,张血琴,刘凯,郭裕钧. 基于正则化的多光谱图像二值化处理. 计算机仿真. 2020(04): 436-440 .
    10. 杜炤鑫,谢海宁,宋杰,周德生,邹晓峰,陈冉,曾平. 基于图像处理和深度学习的配网跳闸故障识别方法. 中国科学技术大学学报. 2020(01): 39-48 .
    11. 蒋鹏程,熊礼治,韩啸. 一种基于内容保护与优化识别的二维码方案. 软件导刊. 2019(02): 119-122 .
    12. 安建尧,李金新,孙双平. 基于Prewitt算子的红外图像边缘检测改进算法. 杭州电子科技大学学报(自然科学版). 2018(05): 18-23+39 .
    13. 陈志伟,徐世许,刘云鹏,曾祥晓. 基于视觉筛选的并联机器人平面抓取系统设计. 制造业自动化. 2018(05): 44-47 .
    14. 熊炜,徐晶晶,赵诗云,王改华,刘敏,赵楠,刘聪. 基于支持向量机的低质量文档图像二值化. 计算机应用与软件. 2018(02): 218-223+241 .
    15. 李昌利,周晓晓,张振,樊棠怀. Retinex模型下基于融合策略的雾霾图像增强. 工程科学与技术. 2018(05): 202-208 .
    16. 于晓,闫振雷,周子杰. 指纹识别网页登录器设计. 实验室研究与探索. 2018(10): 85-88+128 .
    17. 宋巧君,张东. 基于双边滤波和Black-hat变换的OSTU裂缝分割算法. 信息技术. 2017(12): 90-92 .
    18. 谢芳娟,曾萍萍,谭菊华. 低分辨率灰度图像传输真实度优化仿真研究. 计算机仿真. 2017(12): 183-186 .
    19. 田敬波. 基于模板算子边缘检测的图像二值化算法. 信息技术与信息化. 2017(09): 98-101 .

    Other cited types(33)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (509) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return