Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
YANG Shouyi, CHENG Haoze, DANG Yaping. Resource Allocation and Load Balancing Strategy in Cloud-fog Hybrid Computing Based on Cluster-collaboration[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2423-2431. doi: 10.11999/JEIT220719
Citation: YANG Shouyi, CHENG Haoze, DANG Yaping. Resource Allocation and Load Balancing Strategy in Cloud-fog Hybrid Computing Based on Cluster-collaboration[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2423-2431. doi: 10.11999/JEIT220719

Resource Allocation and Load Balancing Strategy in Cloud-fog Hybrid Computing Based on Cluster-collaboration

doi: 10.11999/JEIT220719
Funds:  The National Key R&D Program Intergovernmental Cooperation Special Project (2016YFE0118400), The Natural Science Foundation of Henan Province (202300410482), Zhengzhou Major Science and Technology Innovation Special (2019CXZX0037)
  • Received Date: 2022-06-01
  • Rev Recd Date: 2022-10-14
  • Available Online: 2022-10-19
  • Publish Date: 2023-07-10
  • Considering the problem of data congestion in mobile networks caused by the rapid growth of smart applications in Internet of Things (IoT), a cloud-fog hybrid computing model based on cluster-collaboration is constructed. The cluster load balancing is considered while introducing weighting factors to balance the computational latency and energy consumption, and finally the minimum weighted sum of system latency and energy consumption is achieved. In order to solve this mixed integer nonlinear programming problem, the original problem is decomposed to optimize the resource allocation using Karush-Kuhn-Tucker (KKT) condition and bisection search iterative method. Then an Overhead Minimization Offloading Algorithm based on Branch and Brand (BB-OMOA) is proposed to obtain the optimal offloading decision. Simulation results show that the cluster-collaboration model improves significantly the system load balancing degree and the proposed strategy outperforms significantly other benchmark schemes.
  • loading
  • [1]
    LYU X C, TIAN Hui, SENGUL C, et al. Multiuser joint task offloading and resource optimization in proximate clouds[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3435–3447. doi: 10.1109/TVT.2016.2593486
    [2]
    HAO Wanming, ZENG Ming, SUN Gangcan, et al. Edge cache-assisted secure low-latency millimeter-wave transmission[J]. IEEE Internet of Things Journal, 2020, 7(3): 1815–1825. doi: 10.1109/JIOT.2019.2957351
    [3]
    ZHANG Tiankui, WANG Yi, LIU Yuanwei, et al. Cache-enabling UAV communications: Network deployment and resource allocation[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7470–7483. doi: 10.1109/TWC.2020.3011881
    [4]
    ZHANG Weizhe, ELGENDY I A, HAMMAD M, et al. Secure and optimized load balancing for multitier IoT and edge-cloud computing systems[J]. IEEE Internet of Things Journal, 2021, 8(10): 8119–8132. doi: 10.1109/JIOT.2020.3042433
    [5]
    GOUDARZI M, WU Huaming, PALANISWAMI M, et al. An application placement technique for concurrent IoT applications in edge and fog computing environments[J]. IEEE Transactions on Mobile Computing, 2021, 20(4): 1298–1311. doi: 10.1109/TMC.2020.2967041
    [6]
    LIU Zening, YANG Yang, CHEN Yu, et al. A multi-tier cost model for effective user scheduling in fog computing networks[C]. 2019 IEEE Conference on Computer Communications Workshops, Paris, France, 2019: 1–6.
    [7]
    REHMAN A U, AHMAD Z, JEHANGIRI A I, et al. Dynamic energy efficient resource allocation strategy for load balancing in fog environment[J]. IEEE Access, 2020, 8: 199829–199839. doi: 10.1109/ACCESS.2020.3035181
    [8]
    ZENG Deze, GU Lin, GUO Song, et al. Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system[J]. IEEE Transactions on Computers, 2016, 65(12): 3702–3712. doi: 10.1109/TC.2016.2536019
    [9]
    PHAM X Q and HUH E N. Towards task scheduling in a cloud-fog computing system[C]. 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS), Kanazawa, Japan, 2016: 1–4.
    [10]
    DO C T, TRAN N H, PHAM C, et al. A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing[C]. 2015 International Conference on Information Networking (ICOIN), Siem Reap, Cambodia, 2015: 324–329.
    [11]
    XU Xiaolong, FU Shucun, CAI Qing, et al. Dynamic resource allocation for load balancing in fog environment[J]. Wireless Communications and Mobile Computing, 2018, 2018: 6421607. doi: 10.1155/2018/6421607
    [12]
    GAO Zihan, HAO Wanming, and YANG Shouyi. Joint offloading and resource allocation for multi-user multi-edge collaborative computing system[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3383–3388. doi: 10.1109/TVT.2021.3139843
    [13]
    SUN Yuxuan, GUO Xueying, SONG Jinhui, et al. Adaptive learning-based task offloading for vehicular edge computing systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3061–3074. doi: 10.1109/TVT.2019.2895593
    [14]
    GAO Zihan, HAO Wanming, ZHANG Ruizhe, et al. Markov decision process-based computation offloading algorithm and resource allocation in time constraint for mobile cloud computing[J]. IET Communications, 2020, 14(13): 2068–2078. doi: 10.1049/iet-com.2020.0062
    [15]
    TRAN T X and POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 856–868. doi: 10.1109/TVT.2018.2881191
    [16]
    DING Changfeng, WANG Junbo, ZHANG Hua, et al. Joint MU-MIMO precoding and resource allocation for mobile-edge computing[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1639–1654. doi: 10.1109/TWC.2020.3035153
    [17]
    HAO Yixue, CHEN Min, HU Long, et al. Energy efficient task caching and offloading for mobile edge computing[J]. IEEE Access, 2018, 6: 11365–11373. doi: 10.1109/ACCESS.2018.2805798
    [18]
    ZHANG Ni, GUO Songtao, DONG Yifan, et al. Joint task offloading and data caching in mobile edge computing[C]. 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Shenzhen, China, 2019: 234–239.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (464) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return