Citation: | XUE Anke, MAO Kecheng, ZHANG Le. Multi-feature Marine Small Target Detection Based on Multi-class Classifier[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2528-2536. doi: 10.11999/JEIT220710 |
[1] |
LI Ying, YANG Yonghu, and ZHU Xueyuan. Target detection in sea clutter based on multifractal characteristics after empirical mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1547–1551. doi: 10.1109/LGRS.2017.2721463
|
[2] |
PETROV N, LE CHEVALIER F, and YAROVOY A G. Detection of range migrating targets in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 37–50. doi: 10.1109/TAES.2017.2731558
|
[3] |
SHI Sainan, LIANG Xiang, SHUI Penglang, et al. Low-velocity small target detection with Doppler-guided retrospective filter in high-resolution radar at fast scan mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8937–8953. doi: 10.1109/TGRS.2019.2923790
|
[4] |
许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084
XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084
|
[5] |
FARINA A, GINI F, GRECO M V, et al. High resolution sea clutter data: Statistical analysis of recorded live data[J]. IEE Proceedings-Radar, Sonar and Navigation, 1997, 144(3): 121–130. doi: 10.1049/ip-rsn:19971107
|
[6] |
CONTE E, DE MAIO A, and GALDI C. Statistical analysis of real clutter at different range resolutions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 903–918. doi: 10.1109/TAES.2004.1337463
|
[7] |
WARD K D, TOUGH R J A, and WATTS S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. London: Institution of Engineering and Technology, 2006.
|
[8] |
DE MAIO A, FOGLIA G, CONTE E, et al. CFAR behavior of adaptive detectors: An experimental analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 233–251. doi: 10.1109/TAES.2005.1413759
|
[9] |
陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11): 30–38. doi: 10.3981/j.issn.1000-7857.2017.11.004
CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radar low-observable target detection[J]. Science &Technology Review, 2017, 35(11): 30–38. doi: 10.3981/j.issn.1000-7857.2017.11.004
|
[10] |
陈小龙, 关键, 黄勇, 等. 雷达低可观测动目标精细化处理及应用[J]. 科技导报, 2017, 35(20): 19–27. doi: 10.3981/j.issn.1000-7857.2017.20.002
CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radar refined processing and its applications for low-observable moving target[J]. Science &Technology Review, 2017, 35(20): 19–27. doi: 10.3981/j.issn.1000-7857.2017.20.002
|
[11] |
WATTS S. Cell-averaging CFAR gain in spatially correlated K-distributed clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5): 321–327. doi: 10.1049/ip-rsn:19960745
|
[12] |
何友, 关键, 孟祥伟, 等. 雷达目标检测与恒虚警处理[M]. 2版. 北京: 清华大学出版社, 2011.
HE You, GUAN Jian, MENG Xiangwei, et al. Radar Target Detection and CFAR Processing[M]. 2nd ed. Beijing: Tsinghua University Press, 2011.
|
[13] |
ZHOU Wei, XIE Junhao, LI Gaopeng, et al. Robust CFAR detector with weighted amplitude iteration in nonhomogeneous sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1520–1535. doi: 10.1109/TAES.2017.2671798
|
[14] |
KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
|
[15] |
ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446
|
[16] |
刘宁波, 关键, 黄勇, 等. 基于频域多尺度Hurst指数的海杂波中目标检测方法[J]. 电子学报, 2013, 41(3): 424–431. doi: 10.3969/j.issn.0372-2112.2013.03.002
LIU Ningbo, GUAN Jian, HUANG Yong, et al. Target detection within sea clutter based on multi-scale Hurst exponent in frequency domain[J]. Acta Electronica Sinica, 2013, 41(3): 424–431. doi: 10.3969/j.issn.0372-2112.2013.03.002
|
[17] |
SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657
|
[18] |
SHI Sainan and SHUI Penglang. Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6395–6411. doi: 10.1109/TGRS.2018.2838260
|
[19] |
郭子薰, 水鹏朗, 白晓惠, 等. 海杂波中基于可控虚警K近邻的海面小目标检测[J]. 雷达学报, 2020, 9(4): 654–663. doi: 10.12000/JR20055
GUO Zixun, SHUI Penglang, BAI Xiaohui, et al. Sea-surface small target detection based on K-NN with controlled false alarm rate in sea clutter[J]. Journal of Radars, 2020, 9(4): 654–663. doi: 10.12000/JR20055
|
[20] |
LI Yuzhou, XIE Pengcheng, TANG Zeshen, et al. SVM-based sea-surface small target detection: A false-alarm-rate-controllable approach[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1225–1229. doi: 10.1109/LGRS.2019.2894385
|
[21] |
CHEN Xiaolong, SU Ningyuan, HUANG Yong, et al. False-alarm-controllable radar detection for marine target based on multi features fusion via CNNs[J]. IEEE Sensors Journal, 2021, 21(7): 9099–9111. doi: 10.1109/JSEN.2021.3054744
|
[22] |
董宏成, 文志云, 万玉辉, 等. 基于DPC聚类重采样结合ELM的不平衡数据分类算法[J]. 计算机工程与科学, 2021, 43(10): 1856–1863. doi: 10.3969/j.issn.1007-130X.2021.10.020
DONG Hongcheng, WEN Zhiyun, WAN Yuhui, et al. An imbalanced data classification algorithm based on DPC clustering resampling combined with ELM[J]. Computer Engineering &Science, 2021, 43(10): 1856–1863. doi: 10.3969/j.issn.1007-130X.2021.10.020
|
[23] |
刘悦. 不平衡数据集下基于时序和高阶特征的硬盘故障预测[J]. 电子技术与软件工程, 2021(19): 152–156.
LIU Yue. Hard disk failure prediction based on time series and higher-order features under imbalanced datasets[J]. Electronic Technology &Software Engineering, 2021(19): 152–156.
|
[24] |
余晨, 杨振泽, 谷建星, 等. 雷达差拍信号的欠采样智能重建[J]. 国外电子测量技术, 2021, 40(9): 143–148. doi: 10.19652/j.cnki.femt.2102832
YU Chen, YANG Zhenze, GU Jianxing, et al. Intelligent under-sampling reconstruction of microwave photonic radar signal[J]. Foreign Electronic Measurement Technology, 2021, 40(9): 143–148. doi: 10.19652/j.cnki.femt.2102832
|
[25] |
张天翼, 丁立新. 一种基于SMOTE的不平衡数据集重采样方法[J]. 计算机应用与软件, 2021, 38(9): 273–279. doi: 10.3969/j.issn.1000-386x.2021.09.043
ZHANG Tianyi and DING Lixin. A new resampling method based on SMOTE for imbalanced data set[J]. Computer Applications and Software, 2021, 38(9): 273–279. doi: 10.3969/j.issn.1000-386x.2021.09.043
|
[26] |
万宇, 齐金平, 张儒, 等. 基于过采样支持向量机的煤与瓦斯突出预测[J]. 科学技术与工程, 2021, 21(28): 12080–12087. doi: 10.3969/j.issn.1671-1815.2021.28.022
WAN Yu, QI Jinping, ZHANG Ru, et al. Prediction of coal and gas outburst based on over-sampling support vector machine[J]. Science Technology and Engineering, 2021, 21(28): 12080–12087. doi: 10.3969/j.issn.1671-1815.2021.28.022
|
[27] |
强冰冰, 尹红, 王瑞. 一种融合集成思想的不平衡数据分类方法[J]. 软件导刊, 2021, 20(9): 206–212. doi: 10.11907/rjdk.202513
QIANG Bingbing, YIN Hong, and WANG Rui. An imbalanced data classification method integrating ensemble ideas[J]. Software Guide, 2021, 20(9): 206–212. doi: 10.11907/rjdk.202513
|
[28] |
王德志, 梁俊艳. 不平衡数据集文本多分类深度学习算法[J]. 计算机工程与设计, 2021, 42(9): 2501–2508. doi: 10.16208/j.issn1000-7024.2021.09.014
WANG Dezhi and LIANG Junyan. Text multi-classification deep learning algorithm based on unbalanced data set[J]. Computer Engineering and Design, 2021, 42(9): 2501–2508. doi: 10.16208/j.issn1000-7024.2021.09.014
|
[29] |
左磊, 产秀秀, 禄晓飞, 等. 基于空域联合时频分解的海面微弱目标检测方法[J]. 雷达学报, 2019, 8(3): 335–343. doi: 10.12000/JR19035
ZUO Lei, CHAN Xiuxiu, LU Xiaofei, et al. A weak target detection method in sea clutter based on joint space-time-frequency decomposition[J]. Journal of Radars, 2019, 8(3): 335–343. doi: 10.12000/JR19035
|