Citation: | XIAO Xiaolin, XIN Fengran, MEI Jie, LI Ang, CAO Hongtao, XU Fangzhou, XU Minpeng, MING Dong. A Review of Adaptive Brain-Computer Interface Research[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2386-2394. doi: 10.11999/JEIT220707 |
[1] |
ABIRI R, BORHANI S, SELLERS E W, et al. A comprehensive review of EEG-based brain-computer interface paradigms[J]. Journal of Neural Engineering, 2019, 16(1): 011001. doi: 10.1088/1741-2552/aaf12e
|
[2] |
MENG Jiayuan, XU Minpeng, WANG Kun, et al. Separable EEG features induced by timing prediction for active brain-computer interfaces[J]. Sensors, 2020, 20(12): 3588. doi: 10.3390/s20123588
|
[3] |
WANG Kun, XU Minpeng, WANG Yijun, et al. Enhance decoding of pre-movement EEG patterns for brain–computer interfaces[J]. Journal of Neural Engineering, 2020, 17(1): 016033. doi: 10.1088/1741-2552/ab598f
|
[4] |
XU Lichao, XU Minpeng, JUNG T P, et al. Correction to: Review of brain encoding and decoding mechanisms for EEG-based brain–computer interface[J]. Cognitive Neurodynamics, 2021, 15(5): 921. doi: 10.1007/s11571-021-09686-x
|
[5] |
XU Minpeng, XIAO Xiaolin, WANG Yijun, et al. A brain—computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(5): 1166–1175. doi: 10.1109/TBME.2018.2799661
|
[6] |
BUTTFIELD A, FERREZ P W, and MILLAN J R. Towards a robust BCI: Error potentials and online learning[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2): 164–168. doi: 10.1109/TNSRE.2006.875555
|
[7] |
SYKACEK P, ROBERTS S J, and STOKES M. Adaptive BCI based on variational Bayesian Kalman filtering: An empirical evaluation[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(5): 719–727. doi: 10.1109/TBME.2004.824128
|
[8] |
MILLAN J R, RENKENS F, MOURINO J, et al. Noninvasive brain-actuated control of a mobile robot by human EEG[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1026–1033. doi: 10.1109/TBME.2004.827086
|
[9] |
CASTILLO-GARCIA J F, CAICEDO-BRAVO E F, and BASTOS T F. Adaptive spontaneous brain-computer interfaces based on software agents[J]. Advances in Data Science and Adaptive Analysis, 2018, 10(2): 1840004. doi: 10.1142/S2424922X18400041
|
[10] |
姜俊. 自适应脑机接口控制系统研究[D]. [硕士论文], 国防科学技术大学, 2011.
JIANG Jun. Research on adaptive brain-computer interface control system[D]. [Master dissertation], National University of Defense Technology, 2011.
|
[11] |
VIDAURRE C, SCHLOGL A, CABEZA R, et al. A fully on-line adaptive BCI[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(6): 1214–1219. doi: 10.1109/TBME.2006.873542
|
[12] |
XU Minpeng, HE Feng, JUNG T P, et al. Current challenges for the practical application of electroencephalography-based brain–computer interfaces[J]. Engineering, 2021, 7(12): 1710–1712. doi: 10.1016/j.eng.2021.09.011
|
[13] |
JIANG Jing, YIN Erwei, WANG Chunhui, et al. Incorporation of dynamic stopping strategy into the high-speed SSVEP-based BCIs[J]. Journal of Neural Engineering, 2018, 15(4): 046025. doi: 10.1088/1741-2552/aac605
|
[14] |
GU Zhenghui, CHEN Zhubing, ZHANG Jintao, et al. An online interactive paradigm for P300 brain-computer interface speller[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(2): 152–161. doi: 10.1109/TNSRE.2019.2892967
|
[15] |
HUANG Yihao, HE Feng, XU Minpeng, et al. Operate P300 speller when performing other task[J]. Journal of Neural Engineering, 2020, 17(5): 056022. doi: 10.1088/1741-2552/abb4a6
|
[16] |
WANG Fei, XU Zongfeng, ZHANG Weiwei, et al. An adaptive control approach for intelligent wheelchair based on BCI combining with QoO[C]. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020.
|
[17] |
XU Minpeng, HAN Jin, WANG Yijun, et al. Implementing over 100 command codes for a high-speed hybrid brain-computer interface using concurrent P300 and SSVEP features[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(11): 3073–3082. doi: 10.1109/TBME.2020.2975614
|
[18] |
MAINSAL B O, REEVES G, COLLINS L M, et al. Optimizing the stimulus presentation paradigm design for the P300-based brain-computer interface using performance prediction[J]. Journal of Neural Engineering, 2017, 14(4): 046025. doi: 10.1088/1741-2552/aa7525
|
[19] |
COWLEY B R, WILLIAMSON R C, ACAR K, et al. Adaptive stimulus selection for optimizing neural population responses[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 30.
|
[20] |
MAINSAH B O, KALIKA D, COLLINS L M, et al. Information-based adaptive stimulus selection to optimize communication efficiency in brain-computer interfaces[C]. The 32nd International Conference on Neural Information Processing Systems (NIPS), Montréal, Canada, 2018: 31.
|
[21] |
CHEN X J, COLLINS L M, and MAINSAH B O. Mitigating the impact of psychophysical effects during adaptive stimulus selection in the P300 speller brain-computer interface[C]. The 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (IEEE EMBC), Mexico, 2021: 5796–5799.
|
[22] |
PAN Hongguang, MI Wenyu, WEN Fan, et al. An adaptive decoder design based on the receding horizon optimization in BMI system[J]. Cognitive Neurodynamics, 2020, 14(3): 281–290. doi: 10.1007/s11571-019-09567-4
|
[23] |
SUN Shiliang and ZHOU Jin. A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces[C]. 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 2014: 1746–1753.
|
[24] |
COSTA A P, MØLLER J S, IVERSEN H K, et al. An adaptive CSP filter to investigate user independence in a 3-class MI-BCI paradigm[J]. Computers in Biology and Medicine, 2018, 103: 24–33. doi: 10.1016/j.compbiomed.2018.09.021
|
[25] |
SCHLÖEGL A, LUGGER K, and PFURTSCHELLER G. Using adaptive autoregressive parameters for a brain-computer-interface experiment[C]. The 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No. 97CH36136), Chicago, USA, 1997.
|
[26] |
YANG Banghua, YAN Guozheng, YAN Rongguo, et al. Adaptive subject-based feature extraction in brain–computer interfaces using wavelet packet best basis decomposition[J]. Medical Engineering & Physics, 2007, 29(1): 48–53. doi: 10.1016/j.medengphy.2006.01.009
|
[27] |
王江, 徐桂芝, 王磊, 等. 基于多通道自适应自回归模型脑-机接口系统特征的提取[J]. 中国组织工程研究与临床康复, 2011, 15(48): 9007–9010. doi: 10.3969/j.issn.1673-8225.2011.48.019
WANG Jiang, XU Guizhi, WANG Lei, et al. Features extraction of brain-computer interface based on adaptive autoregressive models[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011, 15(48): 9007–9010. doi: 10.3969/j.issn.1673-8225.2011.48.019
|
[28] |
TALUKDAR U, HAZARIKA S M, and GAN J Q. Adaptive feature extraction in EEG-based motor imagery BCI: Tracking mental fatigue[J]. Journal of Neural Engineering, 2020, 17(1): 016020. doi: 10.1088/1741-2552/ab53f1
|
[29] |
KIM C, SUN Jinwei, LIU Dan, et al. An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI[J]. Medical & Biological Engineering & Computing, 2018, 56(9): 1645–1658. doi: 10.1007/s11517-017-1761-4
|
[30] |
MOLLA K I, MORIKAWA N, ISLAM R, et al. Data-adaptive spatiotemporal ERP cleaning for single-trial BCI implementation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(7): 1334–1344. doi: 10.1109/TNSRE.2018.2844109
|
[31] |
PARASHIVA P K and VINOD A P. Improving direction decoding accuracy during online motor imagery based brain-computer interface using error-related potentials[J]. Biomedical Signal Processing and Control, 2022, 74: 103515. doi: 10.1016/j.bspc.2022.103515
|
[32] |
AN Ying, SHI Tianwei, REN Ling, et al. UAV control in 2D space based on brain computer interface[C]. The 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 2017: 594–598.
|
[33] |
CHIANG K J, EMMANOUILIDOU D, GAMPER H, et al. A closed-loop adaptive brain-computer interface framework: Improving the classifier with the use of error-related potentials[C]. The 10th International IEEE/EMBS Conference on Neural Engineering (NER), Italy, 2021: 487–490.
|
[34] |
JIANG Qin, ZHANG Yi, GE Gengyu, et al. An adaptive CSP and clustering classification for online motor imagery EEG[J]. IEEE Access, 2020, 8: 156117–156128. doi: 10.1109/ACCESS.2020.3016700
|
[35] |
WONG C M, WANG Ze, NAKANISHI M, et al. Online adaptation boosts SSVEP-based BCI performance[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(6): 2018–2028. doi: 10.1109/TBME.2021.3133594
|
[36] |
KOMIJANI H, PARSAEI M R, KHAJEH E, et al. EEG classification using recurrent adaptive neuro-fuzzy network based on time-series prediction[J]. Neural Computing and Applications, 2019, 31(7): 2551–2562. doi: 10.1007/s00521-017-3213-3
|
[37] |
MA Zheng, CHENG Jun, and TAO Dapeng. Online learning using projections onto shrinkage closed balls for adaptive brain-computer interface[J]. Pattern Recognition, 2020, 97: 107017. doi: 10.1016/j.patcog.2019.107017
|
[38] |
CHEN Yonghao, YANG Chen, CHEN Xiaogang, et al. A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy[J]. Journal of Neural Engineering, 2021, 18(3): 036007. doi: 10.1088/1741-2552/ab914e
|
[39] |
CHEN Lingling, CHEN Pengfei, ZHAO Shaokai, et al. Adaptive asynchronous control system of robotic arm based on augmented reality-assisted brain–computer interface[J]. Journal of Neural Engineering, 2021, 18(6): 066005. doi: 10.1088/1741-2552/ac3044
|
[40] |
KE Yufeng, WANG Peiyuan, CHEN Yuqian, et al. Training and testing ERP-BCIs under different mental workload conditions[J]. Journal of Neural Engineering, 2016, 13(1): 016007. doi: 10.1088/1741-2560/13/1/016007
|
[41] |
ZHAO Yawei, TANG Jiabei, CAO Yong, et al. Effects of distracting task with different mental workload on steady-state visual evoked potential based brain computer interfaces—an offline study[J]. Frontiers in Neuroscience, 2018, 12: 79. doi: 10.3389/fnins.2018.00079
|
[42] |
ALIAKBARYHOSSEINABADI S and MRACHACZ-KERSTING N. Adaptive brain-computer interface with attention alterations in patients with amyotrophic lateral sclerosis[C]. The 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, Canada, 2020: 3188–3191.
|
[43] |
CECOTTI H. Adaptive time segment analysis for steady-state visual evoked potential based brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(3): 552–560. doi: 10.1109/TNSRE.2020.2968307
|
[44] |
DA CRUZ J N, WAN Feng, WONG C M, et al. Adaptive time-window length based on online performance measurement in SSVEP-based BCIs[J]. Neurocomputing, 2015, 149: 93–99. doi: 10.1016/j.neucom.2014.01.062
|
[45] |
LIU Guangquan, ZHANG Dingguo, MENG Jianjun, et al. Unsupervised adaptation of electroencephalogram signal processing based on fuzzy C‐means algorithm[J]. International Journal of Adaptive Control and Signal Processing, 2012, 26(6): 482–495. doi: 10.1002/acs.1293
|
[46] |
BENAROCH C, SADATNEJAD K, ROC A, et al. Long-term BCI training of a Tetraplegic user: Adaptive Riemannian classifiers and user training[J]. Frontiers in Human Neuroscience, 2021, 15: 635653. doi: 10.3389/fnhum.2021.635653
|
[47] |
MYRDEN A and CHAU T. Towards psychologically adaptive brain-computer interfaces[J]. Journal of Neural Engineering, 2016, 13(6): 066022. doi: 10.1088/1741-2560/13/6/066022
|
[48] |
HAN S Y, KWAK N S, OH T, et al. Classification of pilots' mental states using a multimodal deep learning network[J]. Biocybernetics and Biomedical Engineering, 2020, 40(1): 324–336. doi: 10.1016/j.bbe.2019.12.002
|
[49] |
FAN Xiaoli, ZHAO Chaoyi, ZHANG Xin, et al. Assessment of mental workload based on multi-physiological signals[J]. Technology and Health Care, 2020, 28(S1): S67–S80. doi: 10.3233/THC-209008
|
[50] |
TAO Da, TAN Haibo, WANG Hailiang, et al. A systematic review of physiological measures of mental workload[J]. International Journal of Environmental Research and Public Health, 2019, 16(15): 2716. doi: 10.3390/ijerph16152716
|
[51] |
HOGERVORST M A, BROUWER A M, and VAN ERP J B F. Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload[J]. Frontiers in Neuroscience, 2014, 8(322): 322. doi: 10.3389/fnins.2014.00322
|
[52] |
LIU Yichuan, AYAZ H, and SHEWOKIS P A. Multisubject “Learning” for mental workload classification using concurrent EEG, fNIRS, and physiological measures[J]. Frontiers in Human Neuroscience, 2017, 11: 389. doi: 10.3389/fnhum.2017.00389
|