Citation: | LIU Bing, WANG Tiantian, GAO Lina, XU Mingzhu, FU Ping. Salient Object Detection Based on Multiple Graph Neural Networks Collaborative Learning[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2561-2570. doi: 10.11999/JEIT220706 |
[1] |
VAN DE SANDE K E A, UIJLINGS J R R, GEVERS T, et al. Segmentation as selective search for object recognition[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 1879–1886.
|
[2] |
BORJI A, CHENG Mingming, HOU Qibin, et al. Salient object detection: A survey[J]. Computational Visual Media, 2019, 5(2): 117–150. doi: 10.48550/arXiv.1411.5878
|
[3] |
刘桂池. 基于显著性和稀疏表示学习的光学遥感图像目标检测与分类[D]. [博士论文], 郑州大学, 2020.
LIU Guichi. Saliency and sparse representation learning based optical remote sensing image object detection and classification[D]. [Ph. D. dissertation], Zhengzhou University, 2020.
|
[4] |
康凯, 杨磊, 李红艳. 基于视觉显著性的小型无人机目标检测方法[J]. 光学与光电技术, 2020, 18(3): 40–44. doi: 10.19519/j.cnki.1672-3392.2020.03.008
KANG Kai, YANG Lei, and LI Hongyan. A novel small UAV detection method based on visual saliency[J]. Optics &Optoelectronic Technology, 2020, 18(3): 40–44. doi: 10.19519/j.cnki.1672-3392.2020.03.008
|
[5] |
REN Zhixiang, GAO Shenghua, CHIA L T, et al. Region-based saliency detection and its application in object recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(5): 769–779. doi: 10.1109/TCSVT.2013.2280096
|
[6] |
FENG Wei, HAN Ruize, GUO Qing, et al. Dynamic saliency-aware regularization for correlation filter-based object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3232–3245. doi: 10.1109/TIP.2019.2895411
|
[7] |
RAMANISHKA V, DAS A, ZHANG Jianming, et al. Top-down visual saliency guided by captions[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3135–3144.
|
[8] |
ZHOU Lian, ZHANG Yuejie, JIANG Yugang, et al. Re-caption: Saliency-enhanced image captioning through two-phase learning[J]. IEEE Transactions on Image Processing, 2020, 29: 694–709. doi: 10.1109/TIP.2019.2928144
|
[9] |
HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 815–828. doi: 10.1109/TPAMI.2018.2815688
|
[10] |
ZHANG Pingping, LIU Wei, LU Huchuan, et al. Salient object detection with lossless feature reflection and weighted structural loss[J]. IEEE Transactions on Image Processing, 2019, 28(6): 3048–3060. doi: 10.1109/TIP.2019.2893535
|
[11] |
张文明, 姚振飞, 高雅昆, 等. 一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型[J]. 电子与信息学报, 2020, 42(5): 1201–1208. doi: 10.11999/JEIT190229
ZHANG Wenming, YAO Zhenfei, GAO Yakun, et al. A deep convolutional network for saliency object detection with balanced accuracy and high efficiency[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1201–1208. doi: 10.11999/JEIT190229
|
[12] |
MA Mingcan, XIA Changqun, and LI Jia. Pyramidal feature shrinking for salient object detection[C]. The Thirty-Fifth AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2021: 2311–2318.
|
[13] |
LIU Jiangjiang, HOU Qibin, and CHENG Mingming. Dynamic feature integration for simultaneous detection of salient object, edge, and skeleton[J]. IEEE Transactions on Image Processing, 2020, 29: 8652–8667. doi: 10.1109/TIP.2020.3017352
|
[14] |
FENG Mengyang, LU Huchuan, and DING Errui. Attentive feedback network for boundary-aware salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1623–1632.
|
[15] |
ZHAO Jiaxing, LIU Jiangjiang, FAN Dengping, et al. EGNet: Edge guidance network for salient object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8778–8787.
|
[16] |
LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. A simple pooling-based design for real-time salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3912–3921.
|
[17] |
QIN Xuebin, FAN Dengping, HUANG Chenyang, et al. Boundary-aware segmentation network for mobile and web applications[EB/OL]. https://arxiv.org/abs/2101.04704, 2021.
|
[18] |
WEI Jun, WANG Shuhui, WU Zhe, et al. Label decoupling framework for salient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13022–13031.
|
[19] |
WU Zhe, SU Li, and HUANG Qingming. Decomposition and completion network for salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 6226–6239. doi: 10.1109/TIP.2021.3093380
|
[20] |
KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. The 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[21] |
WANG Lijun, LU Huchuan, WANG Yifan, et al. Learning to detect salient objects with image-level supervision[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3796–3805.
|
[22] |
SHI Jianping, YAN Qiong, LI Xu, et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 717–729. doi: 10.1109/TPAMI.2015.2465960
|
[23] |
LI Yin, HOU Xiaodi, KOCH C, et al. The secrets of salient object segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 280–287.
|
[24] |
LI Cuiping, CHEN Zhenxue, LIU Chengyun, et al. Saliency detection: Multi-level combination approach via graph-based manifold ranking[C]. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Guilin, China, 2017: 604–609.
|
[25] |
ZHAO Xiaoqi, PANG Youwei, ZHANG Lihe, et al. Self-supervised pretraining for RGB-D salient object detection[C]. The Thirty-Sixth AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2022: 3463–3471.
|
[26] |
LI Yin and GUPTA A. Beyond grids: Learning graph representations for visual recognition[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 9245–9255.
|
[27] |
ZHAI Qiang, LI Xin, YANG Fan, et al. Mutual graph learning for camouflaged object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 12992–13002.
|