Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
MA Qiang, DAI Jun. User Matching Method for Cross Social Networks Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2650-2658. doi: 10.11999/JEIT220702
Citation: MA Qiang, DAI Jun. User Matching Method for Cross Social Networks Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2650-2658. doi: 10.11999/JEIT220702

User Matching Method for Cross Social Networks Based on Deep Learning

doi: 10.11999/JEIT220702
Funds:  The National Natural Science Foundation of China (62071170,62072158), Henan Science Foundation for Distinguished Young Scholars (222300420006), Henan Support Plan for Science and Technology Innovation Team of Universities (21IRTSTHN015), The Doctoral Foundation of Southwest University of Science and Technology (17zx7158)
  • Received Date: 2022-05-31
  • Accepted Date: 2022-09-06
  • Rev Recd Date: 2022-08-27
  • Available Online: 2022-09-09
  • Publish Date: 2023-07-10
  • The existing spatio-temporal information based user matching schemes for cross social networks have problems of spatio-temporal information decoupling and feature extraction difficulties, which result in a decrease in matching accuracy. A Deep Learning based User Matching method for Cross social Networks (DLUMCN) is proposed. Firstly, grid mapping at the spatio-temporal scale is carried out on the user sign-in data. The sign-in matrix set is generated, which contains user characteristics. User sign-in map is formed after normalization. Secondly, the convolution is used to generate high-dimensional spatio-temporal feature maps from the user sign-in map. The weight transformation and feature fusion of feature maps are carried out by deep separable convolution. The feature vector is obtained by one-dimensional expansion of feature maps. Finally, the fully connected feedforward network is used to build a classifier and output the user matching score. Experimental results on two sets of datasets of real social networks show that the proposed method has improved matching accuracy and F1-value, compared with the existing related methods. The effectiveness of the proposed method is demonstrated.
  • loading
  • [1]
    DENG Kaikai, XING Ling, ZHENG Longshui, et al. A user identification algorithm based on user behavior analysis in social networks[J]. IEEE Access, 2019, 7: 47114–47123. doi: 10.1109/ACCESS.2019.2909089
    [2]
    邢玲, 邓凯凯, 吴红海, 等. 复杂网络视角下跨社交网络用户身份识别研究综述[J]. 电子科技大学学报, 2020, 49(6): 905–917. doi: 10.12178/1001-0548.2019182

    XING Ling, DENG Kaikai, WU Honghai, et al. Review of user identification across social networks: The complex network approach[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(6): 905–917. doi: 10.12178/1001-0548.2019182
    [3]
    张树森, 梁循, 弭宝瞳, 等. 基于内容的社交网络用户身份识别方法[J]. 计算机学报, 2019, 42(8): 1739–1754. doi: 10.11897/SP.J.1016.2019.01739

    ZHANG Shusen, LIANG Xun, MI Baotong, et al. Content-based social network user identification methods[J]. Chinese Journal of Computers, 2019, 42(8): 1739–1754. doi: 10.11897/SP.J.1016.2019.01739
    [4]
    HAO Tianyi, ZHOU Jingbo, CHENG Yunsheng, et al. User identification in cyber-physical space: A case study on mobile query logs and trajectories[C]. The 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, USA, 2016: 71.
    [5]
    CHEN Wei, YIN Hongzhi, WANG Weiqing, et al. Exploiting spatio-temporal user behaviors for user linkage[C]. The ACM International Conference on Information and Knowledge Management, Singapore, 2017: 517–526.
    [6]
    KONDOR D, HASHEMIAN B, DE MONTJOYE Y A, et al. Towards matching user mobility traces in large-scale datasets[J]. IEEE Transactions on Big Data, 2020, 6(4): 714–726. doi: 10.1109/TBDATA.2018.2871693
    [7]
    HAO Tianyi, ZHOU Jingbo, CHENG Yunsheng, et al. A unified framework for user identification across online and offline data[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4): 1562–1575. doi: 10.1109/TKDE.2020.3000287
    [8]
    HE Wenqiang, LI Yongjun, ZHANG Yinyin, et al. A binary-search-based locality-sensitive hashing method for cross-site user identification[J]. IEEE Transactions on Computational Social Systems, 2022, 10(2): 480–491.
    [9]
    王前东. 经典轨迹的鲁棒相似度量算法[J]. 电子与信息学报, 2020, 42(8): 1999–2005. doi: 10.11999/JEIT190550

    WANG Qiandong. A robust trajectory similarity measure method for classical trajectory[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1999–2005. doi: 10.11999/JEIT190550
    [10]
    QI Mengjun, WANG Zhongyuan, HE Zheng, et al. User identification across asynchronous mobility trajectories[J]. Sensors, 2019, 19(9): 2102. doi: 10.3390/s19092102
    [11]
    HAN Xiaohui, WANG Lianhai, XU Lijuan, et al. Social Media account linkage using user-generated geo-location data[C]. IEEE Conference on Intelligence and Security Informatics, Tucson, USA, 2016: 157–162.
    [12]
    冯朔, 申德荣, 聂铁铮, 等. 一种基于最大公共子图的社交网络对齐方法[J]. 软件学报, 2019, 30(7): 2175–2187. doi: 10.13328/j.cnki.jos.005831

    FENG Shuo, SHEN Derong, NIE Tiezheng, et al. Maximum common subgraph based social network alignment method[J]. Journal of Software, 2019, 30(7): 2175–2187. doi: 10.13328/j.cnki.jos.005831
    [13]
    陈鸿昶, 徐乾, 黄瑞阳, 等. 一种基于用户轨迹的跨社交网络用户身份识别算法[J]. 电子与信息学报, 2018, 40(11): 2758–2764. doi: 10.11999/JEIT180130

    CHEN Hongchang, XU Qian, HUANG Ruiyang, et al. User identification across social networks based on user trajectory[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2758–2764. doi: 10.11999/JEIT180130
    [14]
    MA Jiangtao, QIAO Yaqiong, HU Guangwu, et al. Social account linking via weighted bipartite graph matching[J]. International Journal of Communication Systems, 2018, 31(7): e3471. doi: 10.1002/dac.3471
    [15]
    XIAO Xiangye, ZHENG Yu, LUO Qiong, et al. Inferring social ties between users with human location history[J]. Journal of Ambient Intelligence and Humanized Computing, 2014, 5(1): 3–19. doi: 10.1007/s12652-012-0117-z
    [16]
    WANG Fengzi, ZHU Xinning, and MIAO Jiansong. Semantic trajectories-based social relationships discovery using WiFi monitors[J]. Personal and Ubiquitous Computing, 2017, 21(1): 85–96. doi: 10.1007/s00779-016-0983-z
    [17]
    LI Yongjun, JI Wenli, GAO Xing, et al. Matching user accounts with spatio-temporal awareness across social networks[J]. Information Sciences, 2021, 570: 1–15. doi: 10.1016/j.ins.2021.04.030
    [18]
    张伟, 李扬, 张吉, 等. 融合时空行为与社交关系的用户轨迹识别模型[J]. 计算机学报, 2021, 44(11): 2173–2188. doi: 10.11897/SP.J.1016.2021.02173

    ZHANG Wei, LI Yang, ZHANG Ji, et al. A user trajectory identification model with fusion of spatio-temporal behavior and social relation[J]. Chinese Journal of Computers, 2021, 44(11): 2173–2188. doi: 10.11897/SP.J.1016.2021.02173
    [19]
    沈佳琪, 周国民. 跨社交网络的同一用户识别算法[J]. 电子技术应用, 2022, 48(1): 109–114. doi: 10.16157/j.issn.0258-7998.211518

    SHEN Jiaqi and ZHOU Guomin. User alignment across social networks[J]. Application of Electronic Technique, 2022, 48(1): 109–114. doi: 10.16157/j.issn.0258-7998.211518
    [20]
    HAN Xiaohui, WANG Lianhai, XU Shujiang, et al. Linking social network accounts by modeling user spatiotemporal habits[C]. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing, China, 2017: 19–24.
    [21]
    CHEN Wei, WANG Weiqing, YIN Hongzhi, et al. User account linkage across multiple platforms with location data[J]. Journal of Computer Science and Technology, 2020, 35(4): 751–768. doi: 10.1007/s11390-020-0250-7
    [22]
    ZHOU Xueyan and YANG Jing. Matching user accounts based on location verification across social networks[J]. Revista Internacional de Métodos Numéricos para Cálculo y Diseñ o en Ingeniería, 2020, 36(1): 8. doi: 10.23967/j.rimni.2019.12.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article Metrics

    Article views (582) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return