Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Xiao Di, Deng Mi-Mi, Zhang Yu-Shu. Robust and Separable Watermarking Algorithm in Encrypted Image Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2015, 37(5): 1248-1254. doi: 10.11999/JEIT141017
Citation: ZHANG Jinfeng, ZHANG Zhen, LIU Shaoxun, WU Jiangxing. Adaptive Optimization Method for Controller Area Network Anomaly Detection under Vehicle Resource Constraints[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2432-2442. doi: 10.11999/JEIT220692

Adaptive Optimization Method for Controller Area Network Anomaly Detection under Vehicle Resource Constraints

doi: 10.11999/JEIT220692
Funds:  The Major Science and Technology Project of Henan Province (221100240100), The Major Science and Technology Innovation Special Project of Zhengzhou (2021KJZX0060-3)
  • Received Date: 2022-05-30
  • Rev Recd Date: 2022-09-09
  • Available Online: 2022-09-15
  • Publish Date: 2023-07-10
  • Considering the problem of how to take into account the accuracy and timeliness of Controller Area Network(CAN) anomaly detection under the constraints of limited vehicle resources, an adaptive optimization method for CAN anomaly detection is proposed. Firstly, based on information entropy, the quantification index of the accuracy and timeliness of CAN network anomaly detection is established, and the CAN anomaly detection is modeled as a multi-objective optimization problem. Then, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) algorithm for solving the multi-objective optimization problem is designed. The Pareto frontier is used as the optimization and adjustment space of the parameters of the CAN anomaly detection model, and a robust control mechanism of the detection model is proposed to meet the needs of different scenarios. Through experimental analysis, the influence of optimization parameters on anomaly detection is deeply analyzed, and it is verified that the proposed method can adapt to the needs of diverse detection scenarios under limited vehicle resources.
  • [1]
    李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1–14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1–14. doi: 10.3969/j.issn.1674-8484.2017.01.001
    [2]
    吴武飞, 李仁发, 曾刚, 等. 智能网联车网络安全研究综述[J]. 通信学报, 2020, 41(6): 161–174. doi: 10.11959/j.issn.1000-436x.2020130

    WU Wufei, LI Renfa, ZENG Gang, et al. Survey of the intelligent and connected vehicle cybersecurity[J]. Journal on Communications, 2020, 41(6): 161–174. doi: 10.11959/j.issn.1000-436x.2020130
    [3]
    中国汽车工程学会. 智能网联汽车信息安全白皮书[R]. 中国智能网联汽车产业创新联盟成立大会, 2017.

    China Society of Automotive Engineering. White paper on intelligent network automobile information security[R]. Inaugural Conference of China Intelligent Connected Vehicle Industry Innovation Alliance, 2017.
    [4]
    KOSCHER K, CZESKIS A, ROESNER F, et al. Experimental security analysis of a modern automobile[C]. 2010 IEEE Symposium on Security and Privacy, Oakland, USA, 2010: 447–462.
    [5]
    CHECKOWAY S, MCCOY D, KANTOR B, et al. Comprehensive experimental analyses of automotive attack surfaces[C]. The 20th USENIX Conference on Security, San Francisco, USA, 2011: 447–462.
    [6]
    WOO S, JO H J, and LEE D H. A practical wireless attack on the connected car and security protocol for in-vehicle CAN[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 993–1006. doi: 10.1109/TITS.2014.2351612
    [7]
    SONG H M, KIM H R, and KIM H K. Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network[C]. 2016 International Conference on Information Networking, Kota Kinabalu, Malaysia, 2016: 63–68.
    [8]
    YANG Yun, DUAN Zongtao, and TEHRANIPOOR M. Identify a spoofing attack on an in-vehicle CAN bus based on the deep features of an ECU fingerprint signal[J]. Smart Cities, 2020, 3(1): 17–30. doi: 10.3390/smartcities3010002
    [9]
    JING Ning and LIU Jiajia. An experimental study towards attacker identification in automotive networks[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6.
    [10]
    YANG Yuanda, XIE Guoqi, WANG Jilong, et al. Intrusion detection for in-vehicle network by using single GAN in connected vehicles[J]. Journal of Circuits, Systems and Computers, 2021, 30(1): 2150007. doi: 10.1142/S0218126621500079
    [11]
    LI Yang, MOUBAYED A, HAMIEH I, et al. Tree-based intelligent intrusion detection system in internet of vehicles[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6.
    [12]
    KANG Minju and KANG J W. A novel intrusion detection method using deep neural network for in-vehicle network security[C]. 2016 IEEE 83rd Vehicular Technology Conference, Nanjing, China, 2016: 1–5.
    [13]
    CASILLO M, COPPOLA S, DE SANTO M, et al. Embedded intrusion detection system for detecting attacks over CAN-BUS[C]. 2019 4th International Conference on System Reliability and Safety, Rome, Italy, 2019: 136–141.
    [14]
    VAN WYK F, WANG Yiyang, KHOJANDI A, et al. Real-time sensor anomaly detection and identification in automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1264–1276. doi: 10.1109/TITS.2019.2906038
    [15]
    BHATIA R, KUMAR V, SERAG K, et al. Evading voltage-based intrusion detection on automotive CAN[C]. 28th Annual Network and Distributed System Security Symposium (NDSS), 2021.
    [16]
    CHOI W, JOO K, JO H J, et al. Voltageids: Low-level communication characteristics for automotive intrusion detection system[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(8): 2114–2129. doi: 10.1109/TIFS.2018.2812149
    [17]
    LEE H, JEONG S H, and KIM H K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame[C]. 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, Canada, 2017: 57–66.
    [18]
    HALDER S, CONTI M, and DAS S K. COIDS: A clock offset based intrusion detection system for controller area networks[C]. The 21st International Conference on Distributed Computing and Networking, Kolkata, India, 2020: 22.
    [19]
    CHO K T and SHIN K G. Fingerprinting electronic control units for vehicle intrusion detection[C]. The 25th USENIX Conference on Security Symposium, Austin, USA, 2016: 911–927.
    [20]
    MÜTER M and ASAJ N. Entropy-based anomaly detection for in-vehicle networks[C]. 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 2011: 1110–1115.
    [21]
    VIRMANI D, TANEJA S, CHAWLA T, et al. Entropy deviation method for analyzing network intrusion[C]. 2016 International Conference on Computing, Communication and Automation, Greater Noida, India, 2016: 515–519.
    [22]
    ZHAO Yuntao, ZHANG Wenbo, FENG Yongxin, et al. A classification detection algorithm based on joint entropy vector against application-layer DDoS attack[J]. Security and Communication Networks, 2018, 2018: 9463653. doi: 10.1155/2018/9463653
    [23]
    WANG Qian, LU Zhaojun, and QU Gang. An entropy analysis based intrusion detection system for controller area network in vehicles[C]. 2018 31st IEEE International System-on-Chip Conference (SOCC), Arlington, USA, 2018: 90–95.
    [24]
    于赫, 秦贵和, 孙铭会, 等. 车载CAN总线网络安全问题及异常检测方法[J]. 吉林大学学报:工学版, 2016, 46(4): 1246–1253. doi: 10.13229/j.cnki.jdxbgxb201604034

    YU He, QIN Guihe, SUN Minghui, et al. Cyber security and anomaly detection method for in-vehicle CAN[J]. Journal of Jilin University:Engineering and Technology Edition, 2016, 46(4): 1246–1253. doi: 10.13229/j.cnki.jdxbgxb201604034
    [25]
    董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266

    DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
    [26]
    MARCHETTI M, STABILI D, GUIDO A, et al. Evaluation of anomaly detection for in-vehicle networks through information-theoretic algorithms[C]. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, Italy, 2016: 1–6.
  • Cited by

    Periodical cited type(13)

    1. 张天骐,周琳,梁先明,徐伟. 基于Blob-Harris特征区域和NSCT-Zernike的鲁棒水印算法. 电子与信息学报. 2021(07): 2038-2045 . 本站查看
    2. 陆金江. 基于深度卷积神经网络的模糊字迹图像识别方法. 佳木斯大学学报(自然科学版). 2021(05): 42-46 .
    3. 黄媛. 数字视频图像加密域水印嵌入鲁棒性评估仿真. 计算机与数字工程. 2018(05): 1012-1016+1057 .
    4. 石慧,冯斌,王相海,李明楚,宋传鸣. 用于盗版追踪的格雷码加密域可逆水印研究. 中国图象图形学报. 2018(11): 1635-1651 .
    5. 石红芹,余鹰,王艳. 基于NSCT和压缩感知的数字图像水印算法. 包装工程. 2017(11): 176-180 .
    6. 邱育桥. 基于智能图像视觉的船舱内部监控与识别. 舰船科学技术. 2017(04): 178-180 .
    7. 孙丽,高娜. 密文域下3D激光雷达图像认证方法研究. 激光杂志. 2017(07): 151-155 .
    8. 陈建辉. 混合云环境下基于椭圆曲线加密的隐私保护模型. 微电子学与计算机. 2017(08): 128-132 .
    9. 丛红艳. 基于多帧二维动画图像的三维自动生成技术. 现代电子技术. 2017(18): 98-100 .
    10. 肖迪,马青青,王兰,向艳萍. 基于稀疏表示的云协助安全数字水印技术. 信息网络安全. 2017(01): 1-7 .
    11. 刘艳波. 基于JPEG图像的改进小波变换信息隐藏算法. 北华大学学报(自然科学版). 2017(05): 697-700 .
    12. 吴秋玲,吴蒙. 基于小波变换的语音信息隐藏新方法. 电子与信息学报. 2016(04): 834-840 . 本站查看
    13. 姚军财,刘贵忠. 一种基于人眼对比度敏感视觉特性的图像自适应量化方法. 电子与信息学报. 2016(05): 1202-1210 . 本站查看

    Other cited types(30)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (505) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return