Citation: | ZHANG Jinfeng, ZHANG Zhen, LIU Shaoxun, WU Jiangxing. Adaptive Optimization Method for Controller Area Network Anomaly Detection under Vehicle Resource Constraints[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2432-2442. doi: 10.11999/JEIT220692 |
[1] |
李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1–14. doi: 10.3969/j.issn.1674-8484.2017.01.001
LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1–14. doi: 10.3969/j.issn.1674-8484.2017.01.001
|
[2] |
吴武飞, 李仁发, 曾刚, 等. 智能网联车网络安全研究综述[J]. 通信学报, 2020, 41(6): 161–174. doi: 10.11959/j.issn.1000-436x.2020130
WU Wufei, LI Renfa, ZENG Gang, et al. Survey of the intelligent and connected vehicle cybersecurity[J]. Journal on Communications, 2020, 41(6): 161–174. doi: 10.11959/j.issn.1000-436x.2020130
|
[3] |
中国汽车工程学会. 智能网联汽车信息安全白皮书[R]. 中国智能网联汽车产业创新联盟成立大会, 2017.
China Society of Automotive Engineering. White paper on intelligent network automobile information security[R]. Inaugural Conference of China Intelligent Connected Vehicle Industry Innovation Alliance, 2017.
|
[4] |
KOSCHER K, CZESKIS A, ROESNER F, et al. Experimental security analysis of a modern automobile[C]. 2010 IEEE Symposium on Security and Privacy, Oakland, USA, 2010: 447–462.
|
[5] |
CHECKOWAY S, MCCOY D, KANTOR B, et al. Comprehensive experimental analyses of automotive attack surfaces[C]. The 20th USENIX Conference on Security, San Francisco, USA, 2011: 447–462.
|
[6] |
WOO S, JO H J, and LEE D H. A practical wireless attack on the connected car and security protocol for in-vehicle CAN[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 993–1006. doi: 10.1109/TITS.2014.2351612
|
[7] |
SONG H M, KIM H R, and KIM H K. Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network[C]. 2016 International Conference on Information Networking, Kota Kinabalu, Malaysia, 2016: 63–68.
|
[8] |
YANG Yun, DUAN Zongtao, and TEHRANIPOOR M. Identify a spoofing attack on an in-vehicle CAN bus based on the deep features of an ECU fingerprint signal[J]. Smart Cities, 2020, 3(1): 17–30. doi: 10.3390/smartcities3010002
|
[9] |
JING Ning and LIU Jiajia. An experimental study towards attacker identification in automotive networks[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6.
|
[10] |
YANG Yuanda, XIE Guoqi, WANG Jilong, et al. Intrusion detection for in-vehicle network by using single GAN in connected vehicles[J]. Journal of Circuits, Systems and Computers, 2021, 30(1): 2150007. doi: 10.1142/S0218126621500079
|
[11] |
LI Yang, MOUBAYED A, HAMIEH I, et al. Tree-based intelligent intrusion detection system in internet of vehicles[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6.
|
[12] |
KANG Minju and KANG J W. A novel intrusion detection method using deep neural network for in-vehicle network security[C]. 2016 IEEE 83rd Vehicular Technology Conference, Nanjing, China, 2016: 1–5.
|
[13] |
CASILLO M, COPPOLA S, DE SANTO M, et al. Embedded intrusion detection system for detecting attacks over CAN-BUS[C]. 2019 4th International Conference on System Reliability and Safety, Rome, Italy, 2019: 136–141.
|
[14] |
VAN WYK F, WANG Yiyang, KHOJANDI A, et al. Real-time sensor anomaly detection and identification in automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1264–1276. doi: 10.1109/TITS.2019.2906038
|
[15] |
BHATIA R, KUMAR V, SERAG K, et al. Evading voltage-based intrusion detection on automotive CAN[C]. 28th Annual Network and Distributed System Security Symposium (NDSS), 2021.
|
[16] |
CHOI W, JOO K, JO H J, et al. Voltageids: Low-level communication characteristics for automotive intrusion detection system[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(8): 2114–2129. doi: 10.1109/TIFS.2018.2812149
|
[17] |
LEE H, JEONG S H, and KIM H K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame[C]. 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, Canada, 2017: 57–66.
|
[18] |
HALDER S, CONTI M, and DAS S K. COIDS: A clock offset based intrusion detection system for controller area networks[C]. The 21st International Conference on Distributed Computing and Networking, Kolkata, India, 2020: 22.
|
[19] |
CHO K T and SHIN K G. Fingerprinting electronic control units for vehicle intrusion detection[C]. The 25th USENIX Conference on Security Symposium, Austin, USA, 2016: 911–927.
|
[20] |
MÜTER M and ASAJ N. Entropy-based anomaly detection for in-vehicle networks[C]. 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 2011: 1110–1115.
|
[21] |
VIRMANI D, TANEJA S, CHAWLA T, et al. Entropy deviation method for analyzing network intrusion[C]. 2016 International Conference on Computing, Communication and Automation, Greater Noida, India, 2016: 515–519.
|
[22] |
ZHAO Yuntao, ZHANG Wenbo, FENG Yongxin, et al. A classification detection algorithm based on joint entropy vector against application-layer DDoS attack[J]. Security and Communication Networks, 2018, 2018: 9463653. doi: 10.1155/2018/9463653
|
[23] |
WANG Qian, LU Zhaojun, and QU Gang. An entropy analysis based intrusion detection system for controller area network in vehicles[C]. 2018 31st IEEE International System-on-Chip Conference (SOCC), Arlington, USA, 2018: 90–95.
|
[24] |
于赫, 秦贵和, 孙铭会, 等. 车载CAN总线网络安全问题及异常检测方法[J]. 吉林大学学报:工学版, 2016, 46(4): 1246–1253. doi: 10.13229/j.cnki.jdxbgxb201604034
YU He, QIN Guihe, SUN Minghui, et al. Cyber security and anomaly detection method for in-vehicle CAN[J]. Journal of Jilin University:Engineering and Technology Edition, 2016, 46(4): 1246–1253. doi: 10.13229/j.cnki.jdxbgxb201604034
|
[25] |
董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
|
[26] |
MARCHETTI M, STABILI D, GUIDO A, et al. Evaluation of anomaly detection for in-vehicle networks through information-theoretic algorithms[C]. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, Italy, 2016: 1–6.
|