Advanced Search
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LU Xinjin, LEI Jing, LI Wei, LAI Xiongkun, DENG Zhe. A Low Peak-to-average Ratio Secure Transmission Method Based on U Matrix Transformation in Orthogonal Time and Frequency Space System[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2395-2405. doi: 10.11999/JEIT220678
Citation: LU Xinjin, LEI Jing, LI Wei, LAI Xiongkun, DENG Zhe. A Low Peak-to-average Ratio Secure Transmission Method Based on U Matrix Transformation in Orthogonal Time and Frequency Space System[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2395-2405. doi: 10.11999/JEIT220678

A Low Peak-to-average Ratio Secure Transmission Method Based on U Matrix Transformation in Orthogonal Time and Frequency Space System

doi: 10.11999/JEIT220678
Funds:  The National Natural Science Foundation of China (6217072012, 6217010609)
  • Received Date: 2022-05-26
  • Rev Recd Date: 2022-09-08
  • Available Online: 2022-09-16
  • Publish Date: 2023-07-10
  • In order to reduce the Peak-to-Average Power Ratio (PAPR) and improve the security of the Orthogonal Time and Frequency Space (OTFS) system, a low PAPR secure transmission method based on the U matrix transformation in OTFS system is proposed in this paper. In this method, the initial key is generated through the Delay-Doppler (DD) domain of wireless channel, which is used to generate further chaotic sequences. The U matrix is designed by the chaotic sequence, which makes the symbols after the U matrix transformation are completely confused and noise-like. Besides, the U matrix selections can be controlled by the index. The transmitter sortes the OTFS time domain signals obtained from different U matrix transformations and selectes the signal with the lowest PAPR for transmission. The encrypted signal can be correctly obtained by the legitimate receiver after obtaining the index value. However, the eavesdropper cannot decrypt the information even if he obtained the transmitted index value. The simulation results show that the proposed scheme can reduce the PAPR of OTFS system effectively while ensuring the system reliability. In addition, the constellation diagram the U matrix transformation becomes spherical chaos, which makes the modulation method and information hidden. The decryption difficulty of the eavesdropper is greatly increased, and the security of the system is effectively enhanced.
  • loading
  • [1]
    SOLDANI D, GUO Y J, BARANI B, et al. 5G for ultra-reliable low-latency communications[J]. IEEE Network, 2018, 32(2): 6–7. doi: 10.1109/MNET.2018.8329617
    [2]
    MOUNTASER G, MAHMOODI T, and SIMEONE O. Reliable and low-latency Fronthaul for tactile internet applications[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(11): 2455–2463. doi: 10.1109/JSAC.2018.2872299
    [3]
    JI Xingsheng, HUANG Kaizhi, JIN Liang, et al. Overview of 5G security technology[J]. Science China Information Sciences, 2018, 61(8): 081301. doi: 10.1007/s11432-017-9426-4
    [4]
    SHIU Y S, CHANG S Y, WU H C, et al. Physical layer security in wireless networks: A tutorial[J]. IEEE Wireless Communications, 2011, 18(2): 66–74. doi: 10.1109/MWC.2011.5751298
    [5]
    LU Xinjin, LEI Jing, and LI Wei. A physical layer encryption algorithm based on length-compatible polar codes[C]. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, Canada, 2020: 1–7.
    [6]
    彭建华, 张帅, 许晓明, 等. 物联网中一种抗大规模天线阵列窃听者的噪声注入方案[J]. 电子与信息学报, 2019, 41(1): 67–73. doi: 10.11999/JEIT180342

    PENG Jianhua, ZHANG Shuai, XU Xiaoming, et al. A noise injection scheme resistant to massive MIMO eavesdropper in IoT[J]. Journal of Electronics &Information Technology, 2019, 41(1): 67–73. doi: 10.11999/JEIT180342
    [7]
    LU Xinjin, LEI Jing, SHI Yuxin, et al. Intelligent reflecting surface assisted secret key generation[J]. IEEE Signal Processing Letters, 2021, 28: 1036–1040. doi: 10.1109/LSP.2021.3061301
    [8]
    鲁信金, 雷菁, 施育鑫. 基于旋转置乱的索引跳频抗干扰加密方法[J]. 通信学报, 2021, 42(12): 27–34. doi: 10.11959/j.issn.1000-436x.2021239

    LU Xinjin, LEI Jing, and SHI Yuxin. Index modulation aided frequency hopping anti-jamming and encryption method based on rotation scrambling[J]. Journal on Communications, 2021, 42(12): 27–34. doi: 10.11959/j.issn.1000-436x.2021239
    [9]
    MATTHEWS R. On the derivation of a “chaotic” encryption algorithm[J]. Cryptologia, 1989, 13(1): 29–42. doi: 10.1080/0161-118991863745
    [10]
    李春彪, 赵云楠, 李雅宁, 等. 基于正弦反馈Logistic混沌映射的图像加密算法及其FPGA实现[J]. 电子与信息学报, 2021, 43(12): 3766–3774. doi: 10.11999/JEIT200575

    LI Chunbiao, ZHAO Yunnan, LI Yaning, et al. An image encryption algorithm based on logistic chaotic mapping with sinusoidal feedback and its FPGA implementation[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3766–3774. doi: 10.11999/JEIT200575
    [11]
    LU Xinjin, SHI Yuxin, LI Wei, et al. A joint physical layer encryption and PAPR reduction scheme based on polar codes and chaotic sequences in OFDM system[J]. IEEE Access, 2019, 7: 73036–73045. doi: 10.1109/ACCESS.2019.2919598
    [12]
    RAPPAPORT T S, 周文安, 付秀花, 王志辉, 等译. 无线通信原理与应用[M]. 2版. 北京: 电子工业出版社, 2006.

    RAPPAPORT T S, ZHOU Wenan, FU Xiuhua, WANG Zhihui, et al. translation. Wireless Communications Principles and Practice[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2006.
    [13]
    TUSHA A, DOĞAN S, and ARSLAN H. A hybrid downlink NOMA with OFDM and OFDM-IM for beyond 5G wireless networks[J]. IEEE Signal Processing Letters, 2020, 27: 491–495. doi: 10.1109/LSP.2020.2979059
    [14]
    SHI Yuxin, LU Xinjin, GAO Kai, et al. Genetic algorithm aided OFDM with all index modulation[J]. IEEE Communications Letters, 2019, 23(12): 2192–2195. doi: 10.1109/LCOMM.2019.2942915
    [15]
    RONNY H and SELIM R S. OTFS methods of data channel characterization and uses thereof[P]. US, 9444514-B2, 2016.
    [16]
    HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6.
    [17]
    JIANG Tao and WU Yiyan. An overview: Peak-to-average power ratio reduction techniques for OFDM signals[J]. IEEE Transactions on Broadcasting, 2008, 54(2): 257–268. doi: 10.1109/TBC.2008.915770
    [18]
    SURABHI G D, AUGUSTINE R M, and CHOCKALINGAM A. Peak-to-average power ratio of OTFS modulation[J]. IEEE Communications Letters, 2019, 23(6): 999–1002. doi: 10.1109/LCOMM.2019.2914042
    [19]
    GAO Shuang and ZHENG Jianping. Peak-to-average power ratio reduction in pilot-embedded OTFS modulation through iterative clipping and filtering[J]. IEEE Communications Letters, 2020, 24(9): 2055–2059. doi: 10.1109/LCOMM.2020.2993036
    [20]
    LIU Mengxue, ZHAO Mingmin, LEI Ming, et al. Autoencoder based PAPR reduction for OTFS modulation[C]. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, USA, 2021: 1–5.
    [21]
    NAVEEN C and SUDHA V. Peak-to-average power ratio reduction in OTFS modulation using companding technique[C]. 2020 5th International Conference on Devices, Circuits and Systems, Coimbatore, India, 2020: 140–143.
    [22]
    FRANCIS J K, AUGUSTINE R M, and CHOCKALINGAM A. Diversity and PAPR enhancement in OTFS using indexing[C]. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021: 1–6.
    [23]
    HU Junfan, SHI Jia, MA Shuai, et al. Secrecy analysis for orthogonal time frequency space scheme based uplink LEO satellite communication[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1623–1627. doi: 10.1109/LWC.2021.3072902
    [24]
    杨欣, 邱彬, 谢坚, 等. 一种基于正交时频空方向调制安全通信方法[P]. 中国专利, 112398775A, 2021.

    YANG Xin, QIU Bin, XIE Jian, et al. Secure communication method based on orthogonal time-frequency-space direction modulation[P]. China Patent, 112398775A, 2021.
    [25]
    SUN Jinjing, WANG Zulin, and HUANG Qin. Secure Precoded orthogonal time frequency space modulation[C]. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 2021: 1–5.
    [26]
    WEI Yunchuan, ZENG Kai, and MOHAPATRA P. Adaptive wireless channel probing for shared key generation[C]. 2011 Proceedings IEEE INFOCOM, Shanghai, China, 2011: 2165–2173.
    [27]
    PENG Yuexing, WANG Peng, XIANG Wei, et al. Secret key generation based on estimated channel state information for TDD-OFDM systems over fading channels[J]. IEEE Transactions on Wireless Communications, 2017, 16(8): 5176–5186. doi: 10.1109/TWC.2017.2706657
    [28]
    LÜ Jinhu and CHEN Guanrong. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3): 659–661. doi: 10.1142/S0218127402004620
    [29]
    MORTARI D. On the rigid rotation concept in n-dimensional spaces[J]. The Journal of the Astronautical Sciences, 2001, 49(3): 401–420. doi: 10.1007/BF03546230
    [30]
    田鑫. 基于FPGA的SHA-3算法硬件实现优化与系统设计[D]. [硕士论文], 西安电子科技大学, 2020: 8–12.

    Tian Xin. Hardware implementation optimization and system design of SHA-3 algorithm based on FPGA[D]. [Master dissertation], Xidian University, 2020: 8–12.
    [31]
    SENGIJPTA S K. Fundamentals of statistical signal processing: Estimation theory[J]. Technometrics, 1995, 37(4): 465–466. doi: 10.1080/00401706.1995.10484391
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (598) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return