Citation: | ZHANG Yanan, QIU Hongbing. Trusted Geographic Routing Protocol Based on Deep Reinforcement Learning for Unmanned Aerial Vehicle Network[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4211-4217. doi: 10.11999/JEIT220649 |
[1] |
BUSHNAQ O M, CHAABAN A, and AL-NAFFOURI T Y. The role of UAV-IoT networks in future wildfire detection[J]. IEEE Internet of Things Journal, 2021, 8(23): 16984–16999. doi: 10.1109/JIOT.2021.3077593
|
[2] |
FENG Wanmei, TANG Jie, YU Yu, et al. UAV-enabled SWIPT in IoT networks for emergency communications[J]. IEEE Wireless Communications, 2020, 27(5): 140–147. doi: 10.1109/MWC.001.1900656
|
[3] |
BOURSIANIS A D, PAPADOPOULOU M S, DIAMANTOULAKIS P, et al. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review[J]. Internet of Things, 2022, 18: 100187. doi: 10.1016/j.iot.2020.100187
|
[4] |
KHAWAJA W, OZDEMIR O, and GUVENC I. UAV air-to-ground channel characterization for mmWave systems[C]. IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada, 2017: 1–5.
|
[5] |
CHEN I R, BAO Fenye, CHANG M J, et al. Dynamic trust management for delay tolerant networks and its application to secure routing[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(5): 1200–1210. doi: 10.1109/TPDS.2013.116
|
[6] |
CHO J H, SWAMI A, and CHEN I R. A survey on trust management for mobile ad hoc networks[J]. IEEE Communications Surveys & Tutorials, 2011, 13(4): 562–583. doi: 10.1109/SURV.2011.092110.00088
|
[7] |
HYLAND M T, MULLINS B E, BALDWIN R O, et al. Simulation-based performance evaluation of mobile ad hoc routing protocols in a swarm of unmanned aerial vehicles[C]. 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07), Niagara Falls, Canada, 2007: 249–256.
|
[8] |
KARP B and KUNG H T. GPSR: Greedy perimeter stateless routing for wireless networks[C]. The 6th Annual International Conference on Mobile Computing and Networking, Boston, USA, 2000: 243–254.
|
[9] |
JUNG W S, YIM J, and KO Y B. QGeo: Q-learning-based geographic ad hoc routing protocol for unmanned robotic networks[J]. IEEE Communications Letters, 2017, 21(10): 2258–2261. doi: 10.1109/LCOMM.2017.2656879
|
[10] |
LYU Niqi, SONG Guanghua, YANG Bowei, et al. QNGPSR: A Q-network enhanced geographic ad-hoc routing protocol based on GPSR[C]. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, USA, 2018: 1–6.
|
[11] |
LIU Jianmin, WANG Qi, HE Chentao, et al. QMR: Q-learning based multi-objective optimization routing protocol for flying ad hoc networks[J]. Computer Communications, 2020, 150: 304–316. doi: 10.1016/j.comcom.2019.11.011
|
[12] |
ZHU Haojin, DU Suguo, GAO Zhaoyu, et al. A probabilistic misbehavior detection scheme toward efficient trust establishment in delay-tolerant networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1): 22–32. doi: 10.1109/TPDS.2013.36
|
[13] |
CHO J H and CHEN I R. PROVEST: Provenance-based trust model for delay tolerant networks[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(1): 151–165. doi: 10.1109/TDSC.2016.2530705
|
[14] |
GE Chunpeng, ZHOU Lu, HANCKE G P, et al. A provenance-aware distributed trust model for resilient unmanned aerial vehicle networks[J]. IEEE Internet of Things Journal, 2021, 8(16): 12481–12489. doi: 10.1109/JIOT.2020.3014947
|
[15] |
DJEDJIG N, TANDJAOUI D, MEDJEK F, et al. Trust-aware and cooperative routing protocol for IoT security[J]. Journal of Information Security and Applications, 2020, 52: 102467. doi: 10.1016/j.jisa.2020.102467
|
[16] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
|