Citation: | CAI Xiangming, XU Weikai, WANG Lin. Survey of Differential Chaotic Communications: Signal Design and Performance Optimization[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3683-3696. doi: 10.11999/JEIT220625 |
[1] |
The Editors of Encyclopaedia Britannica. Chaos theory[EB/OL]. https://www.britannica.com/science/chaos-theory, 2021.
|
[2] |
MATSUMOTO T. A chaotic attractor from Chua's circuit[J]. IEEE Transactions on Circuits and Systems, 1984, 31(12): 1055–1058. doi: 10.1109/TCS.1984.1085459
|
[3] |
PECORA L M and CARROLL T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821–824. doi: 10.1103/PhysRevLett.64.821
|
[4] |
CUOMO K M and OPPENHEIM A V. Circuit implementation of synchronized chaos with applications to communications[J]. Physical Review Letters, 1993, 71(1): 65–68. doi: 10.1103/PhysRevLett.71.65
|
[5] |
OPPENHEIM A V, WORNELL G W, ISABELLE S H, et al. Signal processing in the context of chaotic signals[C]. [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, USA, 1992: 117–120.
|
[6] |
SCHUSTER H G and JUST W. Deterministic Chaos: An Introduction[M]. Weinheim: John Wiley & Sons, 2005.
|
[7] |
HALLE K S, WU C W, ITOH M, et al. Spread spectrum communication through modulation of chaos[J]. International Journal of Bifurcation and Chaos, 1993, 3(2): 469–477. doi: 10.1142/S0218127493000374
|
[8] |
DEDIEU H, KENNEDY M P, and HASLER M. Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuits[J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, 1993, 40(10): 634–642. doi: 10.1109/82.246164
|
[9] |
KOCAREV L and PARLITZ U. General approach for chaotic synchronization with applications to communication[J]. Physical Review Letters, 1995, 74(25): 5028–5031. doi: 10.1103/PhysRevLett.74.5028
|
[10] |
KOLUMBÁN G, VIZVÁRI B, SCHWARZ W, et al. Differential chaos shift keying: A robust coding for chaos communication[C]. The 4th International Workshop on Nonlinear Dynamics of Electronic Systems, Seville, Spain, 1996: 87–92.
|
[11] |
ABEL A and SCHWARZ W. Chaos communications-principles, schemes, and system analysis[J]. Proceedings of the IEEE, 2002, 90(5): 691–710. doi: 10.1109/JPROC.2002.1015002
|
[12] |
XIA Yongxiang, TSE C K, and LAU F C M. Performance of differential chaos-shift-keying digital communication systems over a multipath fading channel with delay spread[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2004, 51(12): 680–684. doi: 10.1109/TCSII.2004.838329
|
[13] |
FANG Yi, HAN Guojun, CHEN Pingping, et al. A survey on DCSK-based communication systems and their application to UWB scenarios[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1804–1837. doi: 10.1109/COMST.2016.2547458
|
[14] |
KADDOUM G. Wireless chaos-based communication systems: A comprehensive survey[J]. IEEE Access, 2016, 4: 2621–2648. doi: 10.1109/ACCESS.2016.2572730
|
[15] |
KOLUMBÁN G, JÁKÓ Z, and KENNEDY M P. Enhanced versions of DCSK and FM-DCSK data transmission systems[C]. 1999 IEEE International Symposium on Circuits and Systems, Orlando, USA, 1999: 475–478.
|
[16] |
LAU F C M, CHEONG K Y, and TSE C K. Permutation-based DCSK and multiple-access DCSK systems[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2003, 50(6): 733–742. doi: 10.1109/TCSI.2003.812616
|
[17] |
YANG Hua and JIANG Guoping. High-efficiency differential-chaos-shift-keying scheme for chaos-based noncoherent communication[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2012, 59(5): 312–316. doi: 10.1109/TCSII.2012.2190859
|
[18] |
YANG Hua and JIANG Guoping. Reference-modulated DCSK: A novel chaotic communication scheme[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2013, 60(4): 232–236. doi: 10.1109/TCSII.2013.2251949
|
[19] |
YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2014, 61(12): 967–971. doi: 10.1109/TCSII.2014.2356914
|
[20] |
KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: An improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2015, 62(9): 901–905. doi: 10.1109/TCSII.2015.2435831
|
[21] |
KADDOUM G, SOUJERI E, and NIJSURE Y. Design of a short reference noncoherent chaos-based communication systems[J]. IEEE Transactions on Communications, 2016, 64(2): 680–689. doi: 10.1109/TCOMM.2015.2514089
|
[22] |
KIS G. Performance analysis of chaotic communications systems[D]. [Ph. D. dissertation], Budapest University of Technology and Economics, 2005.
|
[23] |
XU Weikai, WANG Lin, and KOLUMBÁN G. A novel differential chaos shift keying modulation scheme[J]. International Journal of Bifurcation and Chaos, 2011, 21(3): 799–814. doi: 10.1142/S0218127411028829
|
[24] |
XU Weikai, WANG Lin, and KOLUMBÁN G. A new data rate adaption communications scheme for code-shifted differential chaos shift keying modulation[J]. International Journal of Bifurcation and Chaos, 2012, 22(8): 1250201. doi: 10.1142/S021812741250201X
|
[25] |
KADDOUM G and GAGNON F. Design of a high-data-rate differential chaos-shift keying system[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2012, 59(7): 448–452. doi: 10.1109/TCSII.2012.2198982
|
[26] |
HUANG Tingting, WANG Lin, XU Weikai, et al. Multilevel code-shifted differential-chaos-shift-keying system[J]. IET Communications, 2016, 10(10): 1189–1195. doi: 10.1049/iet-com.2015.1109
|
[27] |
NGUYEN B. V, NGUYEN M. T, JUNG H, et al. Designing anti-jamming receivers for NR-DCSK systems utilizing ICA, WPD, and VMD methods[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(9): 1522–1526. doi: 10.1109/TCSII.2019.2891254
|
[28] |
YANG Hua, TANG W K S, CHEN Guanrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622
|
[29] |
GALIAS Z and MAGGIO G M. Quadrature chaos-shift keying: Theory and performance analysis[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2001, 48(12): 1510–1519. doi: 10.1109/TCSI.2001.972858
|
[30] |
WANG Lin, CAI Guofa, and CHEN G R. Design and performance analysis of a new multiresolution M-ary differential chaos shift keying communication system[J]. IEEE Transactions on Wireless Communications, 2015, 14(9): 5197–5208. doi: 10.1109/TWC.2015.2434820
|
[31] |
CAI Guofa and SONG Yang. Closed-form BER expressions of M-ary DCSK systems over multipath Rayleigh fading channels[J]. IEEE Communications Letters, 2020, 24(6): 1192–1196. doi: 10.1109/LCOMM.2020.2981060
|
[32] |
CAI Guofa, FANG Yi, and HAN Guojun. Design of an adaptive multiresolution M-ary DCSK system[J]. IEEE Communications Letters, 2017, 21(1): 60–63. doi: 10.1109/LCOMM.2016.2614682
|
[33] |
CAI Guofa, FANG Yi, HAN Guojun, et al. A square-constellation-based M-ary DCSK communication system[J]. IEEE Access, 2016, 4: 6295–6303. doi: 10.1109/ACCESS.2016.2612224
|
[34] |
CAI Guofa, FANG Yi, HAN Guojun, et al. A new hierarchical M-ary DCSK communication system: Design and analysis[J]. IEEE Access, 2017, 5: 17414–17424. doi: 10.1109/ACCESS.2017.2740973
|
[35] |
CAI Xiangming, XU Weikai, ZHANG Rongfang, et al. A multilevel code shifted differential chaos shift keying system with M-ary modulation[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2019, 66(8): 1451–1455. doi: 10.1109/TCSII.2018.2886377
|
[36] |
ZHANG Haotian, ZHANG Lin, CHENG Julian, et al. An intelligent detection based on deep learning for multilevel code shifted differential chaos shift keying system with M-ary modulation[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(1): 155–169. doi: 10.1109/TCCN.2021.3111981
|
[37] |
CHEN Zuwei, ZHANG Lin, and WU Zhiqiang. High data rate discrete-cosine-spreading aided M-ary differential chaos shift keying scheme with low PAPR[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2020, 67(11): 2492–2496. doi: 10.1109/TCSII.2020.2980738
|
[38] |
MIAO Meiyuan, WANG Lin, CHEN Guanrong, et al. Design and analysis of replica piecewise M-ary DCSK scheme for power line communications with asynchronous impulsive noise[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(12): 5443–5453. doi: 10.1109/TCSI.2020.3023749
|
[39] |
KADDOUM G, RICHARDSON F D, and GAGNON F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281–3291. doi: 10.1109/TCOMM.2013.071013.130225
|
[40] |
YANG Hua, TANG W K S, CHEN Guanrong, et al. Multi-carrier chaos shift keying: System design and performance analysis[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2017, 64(8): 2182–2194. doi: 10.1109/TCSI.2017.2685344
|
[41] |
LI Shuying, ZHAO Yaqin, and WU Zhilu. Design and analysis of an OFDM-based differential chaos shift keying communication system[J]. Journal of Communications, 2015, 10(3): 199–205. doi: 10.12720/jcm.10.3.199-205
|
[42] |
HUANG Tingting, WANG Lin, XU Weikai, et al. A multi-carrier M-ary differential chaos shift keying system with low PAPR[J]. IEEE Access, 2017, 5: 18793–18803. doi: 10.1109/ACCESS.2017.2752238
|
[43] |
LIU Zhaofeng, ZHANG Lin, and CHEN Zuwei. Low PAPR OFDM-based DCSK design with carrier interferometry spreading codes[J]. IEEE Communications Letters, 2018, 22(8): 1588–1591. doi: 10.1109/LCOMM.2018.2842196
|
[44] |
ZHANG Lin, ZHANG Haotian, JIANG Yuan, et al. Intelligent and reliable deep learning LSTM neural networks-based OFDM-DCSK demodulation design[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16163–16167. doi: 10.1109/TVT.2020.3022043
|
[45] |
CHEN Menglei, XU Weikai, WANG Deqing, et al. Design of a multi-carrier different chaos shift keying communication system in doubly selective fading channels[C]. The 23rd Asia-Pacific Conference on Communications, Perth, Australia, 2017: 1–6.
|
[46] |
CHEN Menglei, XU Weikai, WANG Deqing, et al. Multi-carrier chaotic communication scheme for underwater acoustic communications[J]. IET Communications, 2019, 13(14): 2097–2105. doi: 10.1049/iet-com.2018.5524
|
[47] |
KADDOUM G and SHOKRANEH F. Analog network coding for multi-user multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1492–1505. doi: 10.1109/TWC.2014.2367508
|
[48] |
KADDOUM G. Design and performance analysis of a multiuser OFDM based differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2016, 64(1): 249–260. doi: 10.1109/TCOMM.2015.2502259
|
[49] |
CHEN Zuwei, ZHANG Lin, WU Zhiqiang, et al. Reliable and efficient sparse code spreading aided MC-DCSK transceiver design for multiuser transmissions[J]. IEEE Transactions on Communications, 2021, 69(3): 1480–1495. doi: 10.1109/TCOMM.2020.3040422
|
[50] |
ZHANG Lin, CHEN Zuwei, RAO Weiwei, et al. Efficient and secure non-coherent OFDM-based overlapped chaotic chip position shift keying system: Design and performance analysis[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(1): 309–321. doi: 10.1109/TCSI.2019.2948789
|
[51] |
LIU Zhaofeng, ZHANG Lin, WU Zhiqiang, et al. A secure and robust frequency and time diversity aided OFDM-DCSK modulation system not requiring channel state information[J]. IEEE Transactions on Communications, 2020, 68(3): 1684–1697. doi: 10.1109/TCOMM.2019.2951512
|
[52] |
LIU Zhaofeng, ZHANG Lin, and WU Zhiqiang. Reliable and secure pre-coding OFDM-DCSK design for practical cognitive radio systems with the carrier frequency offset[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(1): 189–200. doi: 10.1109/TCCN.2019.2959332
|
[53] |
CAI Xiangming, HU Luyao, XU Weikai, et al. Design of an OFDM-based differential cyclic-shifted DCSK system for underwater acoustic communications[C]. The 26th IEEE Asia-Pacific Conference on Communications, Kuala Lumpur, Malaysia, 2021: 304–309.
|
[54] |
KISEL A, DEDIEU H, and OGORZALEK M. Noise reduction methods for chaotic communication schemes[C]. 1999 IEEE International Symposium on Circuits and Systems, Orlando, USA, 1999: 446–449.
|
[55] |
JAKO Z and KIS G. Application of noise reduction to chaotic communications: A case study[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2000, 47(12): 1720–1725. doi: 10.1109/81.899924
|
[56] |
JAKO Z and KIS G. On the effectiveness of noise reduction methods in DCSK systems[C]. 2000 IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 2000: 437–440.
|
[57] |
SCHWEIZER J and SCHIMMING T. Symbolic dynamics for processing chaotic signals. I. Noise reduction of chaotic sequences[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2001, 48(11): 1269–1282. doi: 10.1109/81.964416
|
[58] |
WANG Zhenchao and ZHANG Shibing. An improved scheme for noise reduction to DCSK based on its retransmission characteristic[C]. The 4th International Conference on Computer Science & Education, Nanning, China, 2009: 366–370.
|
[59] |
KADDOUM G and SOUJERI E. NR-DCSK: A noise reduction differential chaos shift keying system[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2016, 63(7): 648–652. doi: 10.1109/TCSII.2016.2532041
|
[60] |
YANG Hua, JIANG Guoping, TANG W K S, et al. Multi-carrier differential chaos shift keying system with subcarriers allocation for noise reduction[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2018, 65(11): 1733–1737. doi: 10.1109/TCSII.2017.2752754
|
[61] |
RAO Weiwei, ZHANG Lin, ZHANG Zhiping, et al. Noise-suppressing chaos generator to improve BER for DCSK systems[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6.
|
[62] |
CAI Xiangming, XU Weikai, and WANG Lin. Design of divide-and-conquer noise decontamination strategy for M-ary DCSK: From remodulation to denoising[J]. IEEE Communications Letters, 2022, 26(7): 1673–1677. doi: 10.1109/LCOMM.2022.3173644
|
[63] |
CHEN Bingjun, ZHANG Lin, and WU Zhiqiang. General iterative receiver design for enhanced reliability in multi-carrier differential chaos shift keying systems[J]. IEEE Transactions on Communications, 2019, 67(11): 7824–7839. doi: 10.1109/TCOMM.2019.2939799
|
[64] |
CAI Xiangming, XU Weikai, WANG Lin, et al. Design and performance analysis of a robust multi-carrier M-ary DCSK system: A noise suppression perspective[J]. IEEE Transactions on Communications, 2022, 70(3): 1623–1637. doi: 10.1109/TCOMM.2022.3144276
|
[65] |
ZHANG Lin, ZHENG Jieheng, CHEN Bingjun, et al. Reliable low-rank approximation of matrices detection aided multicarrier DCSK receiver design[J]. IEEE Systems Journal, 2021, 15(4): 5277–5288. doi: 10.1109/JSYST.2020.3043420
|
[66] |
LIU Zhaofeng, SO H C, ZHANG Lin, et al. Robust receiver for OFDM-DCSK modulation via rank-1 modeling and ℓ p-minimization[J]. Signal Processing, 2021, 188: 108219. doi: 10.1016/j.sigpro.2021.108219
|
[67] |
BASAR E, WEN Miaowen, MESLEH R, et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5: 16693–16746. doi: 10.1109/ACCESS.2017.2737528
|
[68] |
KADDOUM G, AHMED M F A, and NIJSURE Y. Code index modulation: A high data rate and energy efficient communication system[J]. IEEE Communications Letters, 2015, 19(2): 175–178. doi: 10.1109/LCOMM.2014.2385054
|
[69] |
XU Weikai, HUANG Tingting, and WANG Lin. Code-shifted differential chaos shift keying with code index modulation for high data rate transmission[J]. IEEE Transactions on Communications, 2017, 65(10): 4285–4294. doi: 10.1109/TCOMM.2017.2725261
|
[70] |
CAI Xiangming, XU Weikai, WANG Deqing, et al. An M-ary orthogonal multilevel differential chaos shift keying system with code index modulation[J]. IEEE Transactions on Communications, 2019, 67(7): 4835–4847. doi: 10.1109/TCOMM.2019.2908367
|
[71] |
CAI Guofa, FANG Yi, WEN Jinming, et al. Multi-carrier M-ary DCSK system with code index modulation: An efficient solution for chaotic communications[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(6): 1375–1386. doi: 10.1109/JSTSP.2019.2913944
|
[72] |
CAI Guofa, FANG Yi, CHEN Pingping, et al. Design of an MISO-SWIPT-aided code-index modulated multi-carrier M-DCSK system for e-health IoT[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(2): 311–324. doi: 10.1109/JSAC.2020.3020603
|
[73] |
HERCEG M, KADDOUM G, VRANJEŠ D, et al. Permutation index DCSK modulation technique for secure multiuser high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2997–3011. doi: 10.1109/TVT.2017.2774108
|
[74] |
LIU Sujie, CHEN Pingping, and CHEN Guanrong. Differential permutation index DCSK modulation for chaotic communication system[J]. IEEE Communications Letters, 2021, 25(6): 2029–2033. doi: 10.1109/LCOMM.2021.3061675
|
[75] |
CAI Xiangming, XU Weikai, HONG Shaohua, et al. A trinal-code shifted differential chaos shift keying system[J]. IEEE Communications Letters, 2021, 25(3): 1000–1004. doi: 10.1109/LCOMM.2020.3041460
|
[76] |
CAI Xiangming, XU Weikai, HONG Shaohua, et al. Discrete W transform based index-keying M-ary DCSK for non-coherent chaotic communications[J]. IEEE Communications Letters, 2021, 25(9): 3104–3108. doi: 10.1109/LCOMM.2021.3095075
|
[77] |
CHENG Guixian, WANG Lin, XU Weikai, et al. Carrier index differential chaos shift keying modulation[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2017, 64(8): 907–911. doi: 10.1109/TCSII.2016.2613093
|
[78] |
CHENG Guixian, WANG Lin, CHEN Qiwang, et al. Design and performance analysis of generalised carrier index M-ary differential chaos shift keying modulation[J]. IET Communications, 2018, 12(11): 1324–1331. doi: 10.1049/iet-com.2017.0800
|
[79] |
YANG Hua, XU Siyuan, and JIANG Guoping. A high data rate solution for differential chaos shift keying based on carrier index modulation[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(4): 1487–1491. doi: 10.1109/TCSII.2020.3038163
|
[80] |
CAI Xiangming, XU Weikai, HONG Shaohua, et al. General carrier index aided dual-mode differential chaos shift keying with full mapping: Design and optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 11665–11677. doi: 10.1109/TVT.2021.3113315
|
[81] |
TAO Yiwei, FANG Yi, MA Huan, et al. Multi-carrier DCSK with hybrid index modulation: A new perspective on frequency-index-aided chaotic communication[J]. IEEE Transactions on Communications, 2022, 70(6): 3760–3773. doi: 10.1109/TCOMM.2022.3169214
|
[82] |
CAI Xiangming, XU Weikai, WANG Lin, et al. Multicarrier M-ary orthogonal chaotic vector shift keying with index modulation for high data rate transmission[J]. IEEE Transactions on Communications, 2020, 68(2): 974–986. doi: 10.1109/TCOMM.2019.2957431
|
[83] |
LIU Zhaofeng, ZHANG Lin, WU Zhiqiang, et al. Energy efficient parallel concatenated index modulation and M-ary PSK aided OFDM-DCSK communications with QoS consideration[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9469–9482. doi: 10.1109/TVT.2020.3002067
|
[84] |
MA Huan, FANG Yi, TAO Yiwei, et al. A novel differential chaos shift keying scheme with transmit diversity[J]. IEEE Communications Letters, 2022, 26(7): 1668–1672. doi: 10.1109/LCOMM.2022.3168151
|
[85] |
MIAO Meiyuan, WANG Lin, KATZ M, et al. Hybrid modulation scheme combining PPM with differential chaos shift keying modulation[J]. IEEE Wireless Communications Letters, 2019, 8(2): 340–343. doi: 10.1109/LWC.2018.2871137
|
[86] |
CAI Xiangming, XU Weikai, MIAO Meiyuan, et al. Design and performance analysis of a new M-ary differential chaos shift keying with index modulation[J]. IEEE Transactions on Wireless Communications, 2020, 19(2): 846–858. doi: 10.1109/TWC.2019.2949315
|
[87] |
CAI Xiangming, XU Weikai, HONG Shaohua, et al. Dual-mode differential chaos shift keying with index modulation[J]. IEEE Transactions on Communications, 2019, 67(9): 6099–6111. doi: 10.1109/TCOMM.2019.2918518
|
[88] |
CAI Xiangming, XU Weikai, LAU F C M, et al. Joint carrier-code index modulation aided M-ary differential chaos shift keying system[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15486–15499. doi: 10.1109/TVT.2020.3041927
|
[89] |
CAI Xiangming, XU Weikai, WANG Lin, et al. Towards high-data-rate noncoherent chaotic communication: A multiple-mode differential chaos shift keying system[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4888–4901. doi: 10.1109/TWC.2021.3062836
|
[90] |
CAI Xiangming, XU Weikai, WANG Lin, et al. Joint energy and correlation detection assisted non-coherent OFDM-DCSK system for underwater acoustic communications[J]. IEEE Transactions on Communications, 2022, 70(6): 3742–3759. doi: 10.1109/TCOMM.2022.3169227
|
[91] |
CORRON N J, BLAKELY J N, and STAHL M T. A matched filter for chaos[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2010, 20(2): 023123. doi: 10.1063/1.3432557
|
[92] |
YAO Junliang, LI Chen, REN Haipeng, et al. Chaos-based wireless communication resisting multipath effects[J]. Physical Review E, 2017, 96(3): 032226. doi: 10.1103/PhysRevE.96.032226
|
[93] |
YAO Junliang, SUN Yuzhe, REN Haipeng, et al. Experimental wireless communication using chaotic baseband waveform[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 578–591. doi: 10.1109/TVT.2018.2882422
|
[94] |
BAI Chao, REN Haipeng, ZHENG Wuyun, et al. Radio-wave communication with chaos[J]. IEEE Access, 2020, 8: 167019–167026. doi: 10.1109/ACCESS.2020.3022632
|
[95] |
REN Haipeng, YIN Huiping, BAI Chao, et al. Performance improvement of chaotic baseband wireless communication using echo state network[J]. IEEE Transactions on Communications, 2020, 68(10): 6525–6536. doi: 10.1109/TCOMM.2020.3007757
|
[96] |
REN Haipeng, YIN Huiping, ZHAO Honger, et al. Artificial intelligence enhances the performance of chaotic baseband wireless communication[J]. IET Communications, 2021, 15(11): 1467–1479. doi: 10.1049/cmu2.12162
|
[97] |
BAI Chao, REN Haipeng, and GREBOGI C. Experimental phase separation differential chaos shift keying wireless communication based on matched filter[J]. IEEE Access, 2019, 7: 25274–25287. doi: 10.1109/ACCESS.2019.2900729
|
[98] |
BAI Chao, REN Haipeng, and KOLUMBÁN G. Double-sub-stream M-ary differential chaos shift keying wireless communication system using chaotic shape-forming filter[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(10): 3574–3587. doi: 10.1109/TCSI.2020.2993674
|
[99] |
REN Haipeng, GUO Silong, BAI Chao, et al. Cross correction and chaotic shape-forming filter based quadrature multi-carrier differential chaos shift keying communication[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12675–12690. doi: 10.1109/TVT.2021.3119176
|
[100] |
BAI Chao, ZHAO Xiaohui, REN Haipeng, et al. Double-stream differential chaos shift keying communications exploiting chaotic shape forming filter and sequence mapping[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4954–4972. doi: 10.1109/TWC.2021.3135043
|