Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
YAN Xiulin, SHI Yunqi, ZHU Lina. Design of Luneburg Lens Antenna Based on Novel Foam Materials[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4111-4115. doi: 10.11999/JEIT220569
Citation: YAN Xiulin, SHI Yunqi, ZHU Lina. Design of Luneburg Lens Antenna Based on Novel Foam Materials[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4111-4115. doi: 10.11999/JEIT220569

Design of Luneburg Lens Antenna Based on Novel Foam Materials

doi: 10.11999/JEIT220569
  • Received Date: 2022-04-30
  • Rev Recd Date: 2022-06-29
  • Available Online: 2022-08-19
  • Publish Date: 2022-12-16
  • In this paper, a new type of foam material PolyMethacrylimIde (PMI) is used to design a millimeter-wave Luneburg lens antenna for the detection of complex space environment. By correlating the density of the foam material with the dielectric constant, combined with the working principle of the traditional Luneburg lens antenna, the simulation optimization is carried out, and the function of miniaturized high-gain multi-beam is realized. The simulation results show that the antenna works at 33.7 GHz, the gain can reach 25.65 dBi, and the beam width is 4.17°. This design method provides a new idea for the realization of miniaturized high-gain Luneburg lenses in the future.
  • loading
  • [1]
    王从思, 段宝岩, 仇原鹰, 等. 一种抛物面天线形状误差的合理评价方法[J]. 上海理工大学学报, 2006, 28(1): 14–18. doi: 10.3969/j.issn.1007-6735.2006.01.004

    WANG Congsi, DUAN Baoyan, QIU Yuanying, et al. Improved evaluation for calculating shape errors of parabolic antennas[J]. Journal of University of Shanghai for Science and Technology, 2006, 28(1): 14–18. doi: 10.3969/j.issn.1007-6735.2006.01.004
    [2]
    田小永, 吴玲玲, 殷鸣, 等. 宽频大角度新型龙勃透镜设计与快速制造[J]. 机械工程学报, 2016, 52(21): 175–181. doi: 10.3901/JME.2016.21.175

    TIAN Xiaoyong, WU Lingling, YIN Ming, et al. Design and rapid fabrication of broadband wide-angle flattened Luneburg lens[J]. Journal of Mechanical Engineering, 2016, 52(21): 175–181. doi: 10.3901/JME.2016.21.175
    [3]
    刘璟. 多波束龙伯透镜天线技术研究[D]. [硕士论文], 电子科技大学, 2010.

    LIU Jing. Research on multi-beam Luneburg lens antenna technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2010.
    [4]
    钟鸣海. 分层龙伯透镜天线技术研究[D]. [硕士论文], 电子科技大学, 2009.

    ZHONG Minghai. Research on layered Luneburg lens antenna technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2009.
    [5]
    郑洪振, 高黎明. 多频多波束龙伯透镜天线在海域覆盖场景下的应用[J]. 移动通信, 2022, 46(3): 87–92. doi: 10.3969/j.issn.1006-1010.2022.03.015

    ZHENG Hongzhen and GAO Liming. Application of multi-frequency and multi-beam Luneburg lens antennas for sea area coverage scenarios[J]. Mobile Communications, 2022, 46(3): 87–92. doi: 10.3969/j.issn.1006-1010.2022.03.015
    [6]
    LUNEBERG R K. Mathematical Theory of Optics[M]. Providence: Brown University Press, 1944.
    [7]
    PEELER G and COLEMAN H. Microwave stepped-index Luneberg lenses[J]. IRE Transactions on Antennas and Propagation, 1958, 6(2): 202–207. doi: 10.1109/TAP.1958.1144575
    [8]
    KOROTKOV A N, SHABUNIN S N, and CHECHETKIN V A. The cylindrical Luneburg lens discretization influence on its radiation parameters[C]. 2017 International Multi-Conferance on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, Novosiboirsk, Russia, 2017, 394–398.
    [9]
    BOR J, LAFOND O, MERLET H, et al. Foam based Luneburg lens antenna at 60 GHz[J]. Progress in Electromagnetics Research Letters, 2014, 44: 1–7. doi: 10.2528/PIERL13092405
    [10]
    RHYS T A. The design of radially symmetric lenses[J]. IEEE Transactions on Antennas and Propagation, 1970, 18(4): 497–506. doi: 10.1109/TAP.1970.1139721
    [11]
    RONDINEAU S, HIMDI M, and SORIEUX J. A sliced spherical Luneburg lens[J]. IEEE Antennas and Wireless Propagation Letters, 2003, 2: 163–166. doi: 10.1109/LAWP.2003.819045
    [12]
    张广成, 刘伟, 张璋, 等. 聚甲基丙烯酰亚胺(PMI)泡沫的进展[J]. 橡塑技术与装备, 2021, 47(10): 23–30. doi: 10.13520/j.cnki.rpte.2021.10.005

    ZHANG Guangcheng, LIU Wei, ZHANG Zhang, et al. Progress in polymethacrylimide (PMI) foam[J]. China Rubber/Plastics Technology and Equipment, 2021, 47(10): 23–30. doi: 10.13520/j.cnki.rpte.2021.10.005
    [13]
    KAZANTSEV O A, SHIRSHIN K V, KORNIENKO P V, et al. Achievements and prospects for the synthesis of poly(meth)acrylimide foams. Stage of the thermal imidisation of polymer precursors[J]. Cellular Polymers, 2021, 40(1): 31–52. doi: 10.1177/0262489320934258
    [14]
    LI Jianwei, WANG Aifeng, QIN Jianbin, et al. Lightweight polymethacrylimide@copper/nickel composite foams for electromagnetic shielding and monopole antennas[J]. Composites Part A:Applied Science and Manufacturing, 2021, 140: 106144. doi: 10.1016/j.compositesa.2020.106144
    [15]
    LUNEBURG R K. Mathematical Theory of Optics[M]. Berkeley: University of California Press, 1964: 1–448.
    [16]
    SCHRANK H E. Precision spherical Luneberg lenses for microwave antennas[C]. 1967 Seventh Electrical Insulation Conference, Chicago, USA, 1967: 179–181.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (983) PDF downloads(178) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return