Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
CHENG Youfeng, WANG Yingxi, ZHONG Jiali, LIAO Cheng. Design of Wideband High-gain Circularly-polarized Antenna Based on Partially Polarization-conversion Surface and Partially Reflection Surface[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4085-4094. doi: 10.11999/JEIT220539
Citation: CHENG Youfeng, WANG Yingxi, ZHONG Jiali, LIAO Cheng. Design of Wideband High-gain Circularly-polarized Antenna Based on Partially Polarization-conversion Surface and Partially Reflection Surface[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4085-4094. doi: 10.11999/JEIT220539

Design of Wideband High-gain Circularly-polarized Antenna Based on Partially Polarization-conversion Surface and Partially Reflection Surface

doi: 10.11999/JEIT220539
Funds:  The National Natural Science Foundation of China (61901398), The Sichuan Science and Technology Program (2021YJ0361)
  • Received Date: 2022-04-28
  • Rev Recd Date: 2022-08-10
  • Available Online: 2022-11-07
  • Publish Date: 2022-12-16
  • This paper presents an electromagnetic metasurface structure with partially polarization-conversion and partially reflection functions and its application to the Fabry-Perot (F-P) cavity antenna design with wideband, high-gain and Circularly Polarized (CP) features. On one hand, when the metasurface is backed by a reflection ground, it is able to show the partially polarization-conversion function and can be applied to the design of the CP radiation source of the F-P antenna. On the other hand, when the reflection ground is removed, the metasurface exhibits partially reflection performance, and thus it can be used as the Partially Reflection Surface (PRS). By placing a rectangle patch upon the Partially Polarization-Conversion Surface (PPCS) and loading parasitic patches and the PRS, the linearly-polarized radiation from the source patch can be transformed into the CP radiation. In addition, the impedance and Axial Ratio (AR) bandwidths of the antenna are both enhanced. The designed antenna is simulated, fabricated and measured. Measured results indicate that the impedance and AR bandwidths are 6.8 ~ 8.4 GHz (21.3%) and 6.8 ~ 8.3 GHz (19.9%), respectively. Besides, the peak realized gain reaches 10.5 dBi.
  • loading
  • [1]
    中国科协学会学术部. 中国科协2021重大科学问题、工程技术难题和产业技术问题终选会在北京召开[J]. 科技导报, 2021, 39(14): 9.

    Academic Department of China Association for Science and Technology. The final selection meeting of 2021 major scientific issues, engineering and technical problems and industrial technology issues of China Association for Science and Technology was held in Beijing[J]. Science &Technology Guide, 2021, 39(14): 9.
    [2]
    徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363
    [3]
    CHEN Shanzhi, SUN Shaohui, and KANG Shaoli. System integration of terrestrial mobile communication and satellite communication —the trends, challenges and key technologies in B5G and 6G[J]. China Communications, 2020, 17(12): 156–171. doi: 10.23919/JCC.2020.12.011
    [4]
    HOSSEINIAN Mohsen, CHOI J P, CHANG S H, et al. Review of 5G NTN standards development and technical challenges for satellite integration with the 5G network[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(8): 22–31. doi: 10.1109/MAES.2021.3072690
    [5]
    张辉, 张晓发, 闫敦豹, 等. 基于H形缝隙耦合的宽带圆极化微带天线[J]. 电子与信息学报, 2007, 29(4): 991–993. doi: 10.3724/SP.J.1146.2005.00710

    ZHANG Hui, ZHANG Xiaofa, YAN Dunbao, et al. Broadband circularly polarized H-shaped aperture-coupled microstrip patch antenna[J]. Journal of Electronics &Information Technology, 2007, 29(4): 991–993. doi: 10.3724/SP.J.1146.2005.00710
    [6]
    李振亚, 竺小松, 张建华. 一种新颖的宽带圆极化单极天线[J]. 电子与信息学报, 2018, 40(11): 2705–2711. doi: 10.11999/JEIT180094

    LI Zhenya, ZHU Xiaosong, and ZHANG Jianhua. A novel broadband circularly polarized monopole antenna[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2705–2711. doi: 10.11999/JEIT180094
    [7]
    NAKAMURA T and FUKUSAKO T. Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(6): 2103–2110. doi: 10.1109/TAP.2011.2143656
    [8]
    MARUYAMA S and FUKUSAKO T. An interpretative study on circularly polarized patch antenna using artificial ground structure[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5919–5924. doi: 10.1109/TAP.2014.2357431
    [9]
    NASIMUDDIN N, CHEN Zhining, and QING Xianming. Bandwidth enhancement of a single-feed circularly polarized antenna using a metasurface: Metamaterial-based wideband CP rectangular Microstrip antenna[J]. IEEE Antennas and Propagation Magazine, 2016, 58(2): 39–46. doi: 10.1109/MAP.2016.2520257
    [10]
    YUE Taiwei, JIANG Zhihao, and WERNER D H. A compact metasurface-enabled dual-band dual-circularly polarized antenna loaded with complementary split ring resonators[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 794–803. doi: 10.1109/TAP.2018.2882616
    [11]
    WU Zhao, LI Long, LI Yongjiu, et al. Metasurface superstrate antenna with wideband circular polarization for satellite communication application[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 374–377. doi: 10.1109/LAWP.2015.2446505
    [12]
    LIU Sihao, YANG Deqiang, and PAN Jin. A low-profile circularly polarized metasurface antenna with wide axial-ratio beamwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1438–1442. doi: 10.1109/LAWP.2019.2919533
    [13]
    JUAN Yue, YANG Wanchen, and CHE Wenquan. Miniaturized low-profile circularly polarized metasurface antenna using capacitive loading[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3527–3532. doi: 10.1109/TAP.2019.2902735
    [14]
    LI Ke, LI Long, CAI Yuanming, et al. A novel design of low-profile dual-band circularly polarized antenna with meta-surface[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1650–1653. doi: 10.1109/lawp.2015.2417169
    [15]
    TA S X and PARK I. Compact wideband circularly polarized patch antenna array using metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1932–1936. doi: 10.1109/LAWP.2017.2689161
    [16]
    KEDZE K E, WANG H, and PARK I. A metasurface-based wide-bandwidth and high-gain circularly polarized patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 732–737. doi: 10.1109/TAP.2021.3098574
    [17]
    ZHU H L, CHEUNG S W, CHUNG K L, et al. Linear-to-circular polarization conversion using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4615–4623. doi: 10.1109/TAP.2013.2267712
    [18]
    刘斌, 谷胜明, 孟明霞, 等. 一种Ka频段高效率圆极化宽角扫描波导缝隙相控阵天线[J]. 电子与信息学报, 2021, 43(6): 1630–1636. doi: 10.11999/JEIT200392

    LIU Bin, GU Shengming, MENG Mingxia, et al. A circularly polarized wide-scan waveguide slot phased array antenna with high efficiency for Ka band application[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1630–1636. doi: 10.11999/JEIT200392
    [19]
    LI Wenting, GAO S, CAI Yuanming, et al. Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4470–4477. doi: 10.1109/TAP.2017.2730240
    [20]
    GAO S, YAHYA R S, HODGES R E, et al. Advanced antennas for small satellites[J]. Proceedings of the IEEE, 2018, 106(3): 391–403. doi: 10.1109/JPROC.2018.2804664
    [21]
    ORR R, GOUSSETIS G, and FUSCO V. Design method for circularly polarized fabry-perot cavity antennas[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 19–26. doi: 10.1109/TAP.2013.2286839
    [22]
    XIE Peng, WANG Guangming, LI Haipeng, et al. Circularly polarized fabry-perot antenna employing a receiver–transmitter polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 3213–3218. doi: 10.1109/TAP.2019.2950811
    [23]
    CAO Wenquan, LV Xinmeng, WANG Qianqian, et al. Wideband circularly polarized Fabry–Perot resonator antenna in Ku-band[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 586–590. doi: 10.1109/LAWP.2019.2896940
    [24]
    GOUDARZI A, MOVAHHEDI M, HONARI M M, et al. Wideband high-gain circularly polarized resonant cavity antenna with a thin complementary partially reflective surface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 532–537. doi: 10.1109/TAP.2020.3001443
    [25]
    宋锡明. 一种新颖的高增益圆极化背射天线[J]. 电子与信息学报, 1985, 7(6): 473–476.

    SONG Ximing. A circularly polarized backfire antenna with high gain[J]. Journal of Electronics &Information Technology, 1985, 7(6): 473–476.
    [26]
    CHENG Youfeng, FENG Ju, LIAO Cheng, et al. Analysis and design of wideband low-RCS wide-scan phased array with AMC ground[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(2): 209–213. doi: 10.1109/LAWP.2020.3044533
    [27]
    XIE Yongchao and HE Lianxing. Wide-angle scanning circular polarization phased array based on polarization rotation technology[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29(5): e21654. doi: 10.1002/mmce.21654
    [28]
    MUHAMMAD S A, SAULEAU R, and LEGAY H. Purely metallic waveguide-fed Fabry–Perot cavity antenna with a polarizing frequency selective surface for compact solutions in circular polarization[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 881–884. doi: 10.1109/LAWP.2012.2210693
    [29]
    LIU Zhenguo, CAO Zhenxin, and WU Lenan. Compact low-profile circularly polarized Fabry–Perot resonator antenna fed by linearly polarized microstrip patch[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 524–527. doi: 10.1109/LAWP.2015.2456886
    [30]
    REN Junyi, JIANG Wen, ZHANG Kunzhe, et al. A high-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 853–856. doi: 10.1109/LAWP.2018.2820015
    [31]
    GARCIA-VIGUERAS M, GOMEZ-TORNERO J L, GOUSSETIS G, et al. Efficient synthesis of 1-D Fabry-Perot antennas with low sidelobe levels[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 869–872. doi: 10.1109/LAWP.2012.2210182
    [32]
    HUA Yanru, PENG Lin, ZHENG Tiancheng, et al. An S-band Fabry-Perot cavity antenna with wide 1 dB gain bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 963–967. doi: 10.1109/LAWP.2021.3068229
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (623) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return