Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
WANG Yue, YAO Zhenyu, CUI Zijian, ZHU Yongqiang, ZHANG Dachi, HU Hui, ZHANG Kuang. Research on Ultra-wideband Linear Polarization Conversion Characteristics Based on Metasurfaces[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4116-4124. doi: 10.11999/JEIT220447
Citation: WANG Yue, YAO Zhenyu, CUI Zijian, ZHU Yongqiang, ZHANG Dachi, HU Hui, ZHANG Kuang. Research on Ultra-wideband Linear Polarization Conversion Characteristics Based on Metasurfaces[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4116-4124. doi: 10.11999/JEIT220447

Research on Ultra-wideband Linear Polarization Conversion Characteristics Based on Metasurfaces

doi: 10.11999/JEIT220447
Funds:  The National Natural Science Foundation of China (62275215, 61975163), The Natural Science Foundation of Shaanxi Province (2020JZ-48), The Youth Innovation Team Subject of Shaanxi Universities (21JP084)
  • Received Date: 2022-04-14
  • Rev Recd Date: 2022-09-02
  • Available Online: 2022-09-08
  • Publish Date: 2022-12-10
  • Polarization conversion has important research significance and application value in the field of terahertz modulation. Traditional polarization conversion devices have many shortcomings, such as large size, low integration, high loss and narrow bandwidth. In this paper, a symmetrical "mountain" structure of resonator is proposed, which can be used to realize the design of reflection and transmission polarization conversion devices. The reflective device realizes the linear polarization conversion with the properties of broadband and extremely high polarization conversion rate. The transmissive device realizes 135.5% ultra-broadband linear polarization conversion. The anisotropy theory is used to analyze the mechanism of polarization conversion in reflective devices, and the Fabry-Pérot-like cavity formed by the resonant structure array and the metallized ground plane is calculated based on the multiple interference theory. The calculated results are in good agreement with the simulations. Furthermore, the Fabry-Pérot-like cavity composed of orthogonal grating and the resonator are used to form a transmissive device. The contributions of different parts of the resonator to the broadband polarization conversion are analyzed. Contribution of different structures validates results for broadband polarization conversion. The research results provide a new idea for the realization of ultra-wideband polarization conversion devices based on fixed phase difference and the application of Fabry-Pérot-like cavities in metasurfaces.
  • loading
  • [1]
    QI Yunping, ZHANG Baohe, LIU Chuqin, et al. Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction[J]. IEEE Access, 2020, 8: 116675–116684. doi: 10.1109/access.2020.3004127
    [2]
    XI Yan, JIANG Wen, HONG Tao, et al. Wideband and wide-angle radar cross section reduction using a hybrid mechanism metasurface[J]. Optics Express, 2021, 29(14): 22427. doi: 10.1364/oe.429972
    [3]
    FENG Rui, RATNI B, YI Jianjia, et al. Versatile metasurface platform for electromagnetic wave tailoring[J]. Photonics Research, 2021, 9(9): 1650–1659. doi: 10.1364/prj.428853
    [4]
    WANG Zhengxing, WU Junwei, WU Liangwei, et al. High efficiency polarization‐encoded holograms with ultrathin bilayer spin‐decoupled information metasurfaces[J]. Advanced Optical Materials, 2021, 9(5): 2001609. doi: 10.1002/adom.202001609
    [5]
    DING Fei, CHANG Bingdong, WEI Qunshuo, et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J]. Laser & Photonics Reviews, 2020, 14(11): 2000116. doi: 10.1002/lpor.202000116
    [6]
    WU Zhixiang, DONG Fengliang, ZHANG Shuo, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180–189. doi: 10.1021/acsphotonics.9b01356
    [7]
    WU Tong, ZHANG Xueqian, XV Quan, et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 2022, 10(1): 2101223. doi: 10.1002/adom.202101223
    [8]
    LI Jie, ZHENG Chenglong, LI Jitao, et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface[J]. Photonics Research, 2021, 9(10): 1939–1947. doi: 10.1364/prj.431019
    [9]
    XU Hexiu, HU Guangwei, HAN Lei, et al. Chirality‐assisted high‐efficiency metasurfaces with independent control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 2019, 7(4): 1801479. doi: 10.1002/adom.201801479
    [10]
    LI Haipeng, WANG Guangming, HU Guangwei, et al. 3D‐printed curved metasurface with multifunctional wavefronts[J]. Advanced Optical Materials, 2020, 8(15): 2000129. doi: 10.1002/adom.202000129
    [11]
    XU Hexiu, WANG Chaohui, HU Guangwei, et al. Spin‐encoded wavelength‐direction multitasking Janus metasurfaces[J]. Advanced Optical Materials, 2021, 9(11): 2100190. doi: 10.1002/adom.202100190
    [12]
    XU Hexiu, HU Guangwei, WANG Yanzhao, et al. Polarization-insensitive 3D conformal-skin metasurface cloak[J]. Light:Science & Applications, 2021, 10(1): 75. doi: 10.1038/s41377-021-00507-8
    [13]
    XU Hexiu, WANG Yanzhao, WANG Chaohui, et al. Deterministic approach to achieve full-polarization cloak[J]. Research, 2021, 2021: 6382172. doi: 10.34133/2021/6382172
    [14]
    ZHANG Ziyang, FAN Fei, LI Tengfei, et al. Terahertz polarization conversion and sensing with double-layer chiral metasurface[J]. Chinese Physics B, 2020, 29(7): 078707. doi: 10.1088/1674-1056/ab9294
    [15]
    BAI Jing and YAO Yu. Highly efficient anisotropic chiral plasmonic metamaterials for polarization conversion and detection[J]. ACS Nano, 2021, 15(9): 14263–14274. doi: 10.1021/acsnano.1c02278
    [16]
    STAV T, FAERMAN A, MAGUID E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 2018, 361(6407): 1101–1104. doi: 10.1126/science.aat9042
    [17]
    WANG Jianwei, PAESANI S, DING Yunhong, et al. Multidimensional quantum entanglement with large-scale integrated optics[J]. Science, 2018, 360(6386): 285–291. doi: 10.1126/science.aar7053
    [18]
    WANG Kai, TITCHENER J G, KRUK S S, et al. Quantum metasurface for multiphoton interference and state reconstruction[J]. Science, 2018, 361(6407): 1104–1108. doi: 10.1126/science.aat8196
    [19]
    HAO Jiaming, YUAN Yu, RAN Lixin, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908
    [20]
    LIN Baoqin, LV Lintao, GUO Jianxin, et al. An Ultra-wideband reflective linear-to-circular polarization converter based on anisotropic metasurface[J]. IEEE Access, 2020, 8: 82732–82740. doi: 10.1109/access.2020.2988058
    [21]
    QUADER S, ZHANG Jin, AKRAM M R, et al. Graphene-based high-efficiency broadband tunable linear-to-circular polarization converter for terahertz waves[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(5): 4501008. doi: 10.1109/jstqe.2020.2969566
    [22]
    WU P C, SOKHOYAN R, SHIRMANESH G K, et al. Near‐infrared active metasurface for dynamic polarization conversion[J]. Advanced Optical Materials, 2021, 9(16): 2100230. doi: 10.1002/adom.202100230
    [23]
    ZHANG Houjiao, LIU Ye, LIU Zhengqi, et al. Multi-functional polarization conversion manipulation via graphene-based metasurface reflectors[J]. Optics Express, 2020, 29(1): 70–81. doi: 10.1364/oe.412925
    [24]
    JIANG Yannan, WANG Lei, WANG Jiao, et al. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies[J]. Optics Express, 2015, 25(22): 27616–27623. doi: 10.1364/oe.25.027616
    [25]
    SUN Zhiwei, SIMA Boyu, ZHAO Junming, et al. Electromagnetic polarization conversion based on Huygens' metasurfaces with coupled electric and magnetic resonances[J]. Optics Express, 2019, 27(8): 11006–11017. doi: 10.1364/OE.27.011006
    [26]
    GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307. doi: 10.1126/science.1235399
    [27]
    AKO R T, LEE W S L, ATAKARAMIANS S, et al. Ultra-wideband tri-layer transmissive linear polarization converter for terahertz waves[J]. APL Photonics, 2020, 5(4): 046101. doi: 10.1063/1.5144115
    [28]
    XU Shitong, FAN Fei, JI Yunyun, et al. Multi-band terahertz linear polarization converter based on carbon nanotube integrated metamaterial[J]. Optics Express, 2021, 29(6): 8824–8833. doi: 10.1364/oe.421552
    [29]
    FEI Peng, VANDENBOSCH G A E, GUO Weihua, et al. Versatile cross‐polarization conversion chiral metasurface for linear and circular polarizations[J]. Advanced Optical Materials, 2020, 8(13): 2000194. doi: 10.1002/adom.202000194
    [30]
    WANG Hongbin, CHENG Yujian, and CHEN Zhining. Wideband and wide-angle single-layered-substrate linear-to-circular polarization metasurface converter[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1186–1191. doi: 10.1109/tap.2019.2938683
    [31]
    ARNIERI E, GRECO F, and AMENDOLA G. Wide-angle scanning, linear-to-circular polarization converter based on standard jerusalem cross frequency selective surfaces[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 578–583. doi: 10.1109/tap.2020.3004981
    [32]
    LIN Rong, LU Fake, HE Xiaoliang, et al. Multiple interference theoretical model for graphene metanmaterial-based tunable brodaband terahertz linear polarization converter design and optimization[J]. Optics Express, , 2021, 29(19): 30357–30370. doi: 10.1364/OE438256
    [33]
    WANG Yelong, QI Feng, LIU Zhaoyang, et al. Ultrathin and flexible reflective polarization converter based on metasurfaces with overlapped arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2512–2526. doi: 10.1109/lawp.2020.3037907
    [34]
    LEE S, KIM W T, KANG J H, et al. Single-layer metasurfaces as spectrally tunable terahertz half- and quarter-waveplates[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 7655–7660. doi: 10.1021/acsami.8b21456
    [35]
    YANG Xue, ZHANG Bo, and SHEN Jingling. An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial[J]. Optical and Quantum Electronics, 2018, 50(8): 315. doi: 10.1007/s11082-018-1571-4
    [36]
    SLOVICK B A, YU Zhigang, and KRISHNAMURTHY S. Generalized effective-medium theory for metamaterials[J]. Physical Review B, 2014, 89(15): 155118. doi: 10.1103/PhysRevB.89.155118
    [37]
    CHEN Houtong, ZHOU Jiangfeng, O'HARA J F, et al. Antireflection coating using metamaterials and identification of its mechanism[J]. Physical Review Letters, 2010, 105(7): 073901. doi: 10.1103/PhysRevLett.105.073901
    [38]
    HU Yanwen, WANG Yu, YAN Zhongming, et al. Linear-to-circular polarization converters with both E-field and H-field hybrid responses[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1433–1439. doi: 10.1109/tap.2020.3016504
    [39]
    KUMAR A and GHATAK A. Polarization of Light with Applications in Optical Fibers[M]. Bellingham SPIE Press, 2011: 75–96.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1198) PDF downloads(257) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return