Citation: | WANG Yue, YAO Zhenyu, CUI Zijian, ZHU Yongqiang, ZHANG Dachi, HU Hui, ZHANG Kuang. Research on Ultra-wideband Linear Polarization Conversion Characteristics Based on Metasurfaces[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4116-4124. doi: 10.11999/JEIT220447 |
[1] |
QI Yunping, ZHANG Baohe, LIU Chuqin, et al. Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction[J]. IEEE Access, 2020, 8: 116675–116684. doi: 10.1109/access.2020.3004127
|
[2] |
XI Yan, JIANG Wen, HONG Tao, et al. Wideband and wide-angle radar cross section reduction using a hybrid mechanism metasurface[J]. Optics Express, 2021, 29(14): 22427. doi: 10.1364/oe.429972
|
[3] |
FENG Rui, RATNI B, YI Jianjia, et al. Versatile metasurface platform for electromagnetic wave tailoring[J]. Photonics Research, 2021, 9(9): 1650–1659. doi: 10.1364/prj.428853
|
[4] |
WANG Zhengxing, WU Junwei, WU Liangwei, et al. High efficiency polarization‐encoded holograms with ultrathin bilayer spin‐decoupled information metasurfaces[J]. Advanced Optical Materials, 2021, 9(5): 2001609. doi: 10.1002/adom.202001609
|
[5] |
DING Fei, CHANG Bingdong, WEI Qunshuo, et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J]. Laser & Photonics Reviews, 2020, 14(11): 2000116. doi: 10.1002/lpor.202000116
|
[6] |
WU Zhixiang, DONG Fengliang, ZHANG Shuo, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180–189. doi: 10.1021/acsphotonics.9b01356
|
[7] |
WU Tong, ZHANG Xueqian, XV Quan, et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 2022, 10(1): 2101223. doi: 10.1002/adom.202101223
|
[8] |
LI Jie, ZHENG Chenglong, LI Jitao, et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface[J]. Photonics Research, 2021, 9(10): 1939–1947. doi: 10.1364/prj.431019
|
[9] |
XU Hexiu, HU Guangwei, HAN Lei, et al. Chirality‐assisted high‐efficiency metasurfaces with independent control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 2019, 7(4): 1801479. doi: 10.1002/adom.201801479
|
[10] |
LI Haipeng, WANG Guangming, HU Guangwei, et al. 3D‐printed curved metasurface with multifunctional wavefronts[J]. Advanced Optical Materials, 2020, 8(15): 2000129. doi: 10.1002/adom.202000129
|
[11] |
XU Hexiu, WANG Chaohui, HU Guangwei, et al. Spin‐encoded wavelength‐direction multitasking Janus metasurfaces[J]. Advanced Optical Materials, 2021, 9(11): 2100190. doi: 10.1002/adom.202100190
|
[12] |
XU Hexiu, HU Guangwei, WANG Yanzhao, et al. Polarization-insensitive 3D conformal-skin metasurface cloak[J]. Light:Science & Applications, 2021, 10(1): 75. doi: 10.1038/s41377-021-00507-8
|
[13] |
XU Hexiu, WANG Yanzhao, WANG Chaohui, et al. Deterministic approach to achieve full-polarization cloak[J]. Research, 2021, 2021: 6382172. doi: 10.34133/2021/6382172
|
[14] |
ZHANG Ziyang, FAN Fei, LI Tengfei, et al. Terahertz polarization conversion and sensing with double-layer chiral metasurface[J]. Chinese Physics B, 2020, 29(7): 078707. doi: 10.1088/1674-1056/ab9294
|
[15] |
BAI Jing and YAO Yu. Highly efficient anisotropic chiral plasmonic metamaterials for polarization conversion and detection[J]. ACS Nano, 2021, 15(9): 14263–14274. doi: 10.1021/acsnano.1c02278
|
[16] |
STAV T, FAERMAN A, MAGUID E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 2018, 361(6407): 1101–1104. doi: 10.1126/science.aat9042
|
[17] |
WANG Jianwei, PAESANI S, DING Yunhong, et al. Multidimensional quantum entanglement with large-scale integrated optics[J]. Science, 2018, 360(6386): 285–291. doi: 10.1126/science.aar7053
|
[18] |
WANG Kai, TITCHENER J G, KRUK S S, et al. Quantum metasurface for multiphoton interference and state reconstruction[J]. Science, 2018, 361(6407): 1104–1108. doi: 10.1126/science.aat8196
|
[19] |
HAO Jiaming, YUAN Yu, RAN Lixin, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908
|
[20] |
LIN Baoqin, LV Lintao, GUO Jianxin, et al. An Ultra-wideband reflective linear-to-circular polarization converter based on anisotropic metasurface[J]. IEEE Access, 2020, 8: 82732–82740. doi: 10.1109/access.2020.2988058
|
[21] |
QUADER S, ZHANG Jin, AKRAM M R, et al. Graphene-based high-efficiency broadband tunable linear-to-circular polarization converter for terahertz waves[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(5): 4501008. doi: 10.1109/jstqe.2020.2969566
|
[22] |
WU P C, SOKHOYAN R, SHIRMANESH G K, et al. Near‐infrared active metasurface for dynamic polarization conversion[J]. Advanced Optical Materials, 2021, 9(16): 2100230. doi: 10.1002/adom.202100230
|
[23] |
ZHANG Houjiao, LIU Ye, LIU Zhengqi, et al. Multi-functional polarization conversion manipulation via graphene-based metasurface reflectors[J]. Optics Express, 2020, 29(1): 70–81. doi: 10.1364/oe.412925
|
[24] |
JIANG Yannan, WANG Lei, WANG Jiao, et al. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies[J]. Optics Express, 2015, 25(22): 27616–27623. doi: 10.1364/oe.25.027616
|
[25] |
SUN Zhiwei, SIMA Boyu, ZHAO Junming, et al. Electromagnetic polarization conversion based on Huygens' metasurfaces with coupled electric and magnetic resonances[J]. Optics Express, 2019, 27(8): 11006–11017. doi: 10.1364/OE.27.011006
|
[26] |
GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307. doi: 10.1126/science.1235399
|
[27] |
AKO R T, LEE W S L, ATAKARAMIANS S, et al. Ultra-wideband tri-layer transmissive linear polarization converter for terahertz waves[J]. APL Photonics, 2020, 5(4): 046101. doi: 10.1063/1.5144115
|
[28] |
XU Shitong, FAN Fei, JI Yunyun, et al. Multi-band terahertz linear polarization converter based on carbon nanotube integrated metamaterial[J]. Optics Express, 2021, 29(6): 8824–8833. doi: 10.1364/oe.421552
|
[29] |
FEI Peng, VANDENBOSCH G A E, GUO Weihua, et al. Versatile cross‐polarization conversion chiral metasurface for linear and circular polarizations[J]. Advanced Optical Materials, 2020, 8(13): 2000194. doi: 10.1002/adom.202000194
|
[30] |
WANG Hongbin, CHENG Yujian, and CHEN Zhining. Wideband and wide-angle single-layered-substrate linear-to-circular polarization metasurface converter[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1186–1191. doi: 10.1109/tap.2019.2938683
|
[31] |
ARNIERI E, GRECO F, and AMENDOLA G. Wide-angle scanning, linear-to-circular polarization converter based on standard jerusalem cross frequency selective surfaces[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 578–583. doi: 10.1109/tap.2020.3004981
|
[32] |
LIN Rong, LU Fake, HE Xiaoliang, et al. Multiple interference theoretical model for graphene metanmaterial-based tunable brodaband terahertz linear polarization converter design and optimization[J]. Optics Express,
|
[33] |
WANG Yelong, QI Feng, LIU Zhaoyang, et al. Ultrathin and flexible reflective polarization converter based on metasurfaces with overlapped arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2512–2526. doi: 10.1109/lawp.2020.3037907
|
[34] |
LEE S, KIM W T, KANG J H, et al. Single-layer metasurfaces as spectrally tunable terahertz half- and quarter-waveplates[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 7655–7660. doi: 10.1021/acsami.8b21456
|
[35] |
YANG Xue, ZHANG Bo, and SHEN Jingling. An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial[J]. Optical and Quantum Electronics, 2018, 50(8): 315. doi: 10.1007/s11082-018-1571-4
|
[36] |
SLOVICK B A, YU Zhigang, and KRISHNAMURTHY S. Generalized effective-medium theory for metamaterials[J]. Physical Review B, 2014, 89(15): 155118. doi: 10.1103/PhysRevB.89.155118
|
[37] |
CHEN Houtong, ZHOU Jiangfeng, O'HARA J F, et al. Antireflection coating using metamaterials and identification of its mechanism[J]. Physical Review Letters, 2010, 105(7): 073901. doi: 10.1103/PhysRevLett.105.073901
|
[38] |
HU Yanwen, WANG Yu, YAN Zhongming, et al. Linear-to-circular polarization converters with both E-field and H-field hybrid responses[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1433–1439. doi: 10.1109/tap.2020.3016504
|
[39] |
KUMAR A and GHATAK A. Polarization of Light with Applications in Optical Fibers[M]. Bellingham SPIE Press, 2011: 75–96.
|