Citation: | SU Yanzhao, HE Chuan, CUI Zhigao, JIANG Ke, CAI Yanping, LI Aihua. Semi-supervised Image Dehazing Algorithm Based on Multi-prior Constraint and Consistency Regularization[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3409-3418. doi: 10.11999/JEIT220381 |
[1] |
李红云, 施云, 高银. 基于显著性权重的多曝光融合的单幅雾天图像复原算法[J]. 电子与信息学报, 2022, 44(1): 261–270. doi: 10.11999/JEIT200931
LI Hongyun, SHI Yun, and GAO Yin. Single image dehazing via saliency weighted multi-exposure fusion[J]. Journal of Electronics &Information Technology, 2022, 44(1): 261–270. doi: 10.11999/JEIT200931
|
[2] |
YANG Wenhan, YUAN Ye, and REN Wenqi, et al. Advancing image understanding in poor visibility environments: A collective benchmark study[J]. IEEE Transactions on Image Processing, 2020, 29: 5737–5752. doi: 10.1109/TIP.2020.2981922
|
[3] |
NAYAR S K and NARASIMHAN S G. Vision in bad weather[C]. Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999: 820–827.
|
[4] |
HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
|
[5] |
ZHU Qingsong, MAI Jiaming, and SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522–3533. doi: 10.1109/TIP.2015.2446191
|
[6] |
FATTAL R. Dehazing using color-lines[J]. ACM Transactions on Graphics, 2014, 34(1): 13. doi: 10.1145/2651362
|
[7] |
REN Wenqi, PAN Jinshan, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks with holistic edges[J]. International Journal of Computer Vision, 2020, 128(1): 240–259. doi: 10.1007/s11263-019-01235-8
|
[8] |
CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187–5198. doi: 10.1109/TIP.2016.2598681
|
[9] |
ZHANG He and PATEL V M. Densely connected pyramid dehazing network[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3194–3203.
|
[10] |
LIU Xiaohong, MA Yongrui, SHI Zhihao, et al. GridDehazeNet: Attention-based multi-scale network for image dehazing[C]. IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 7313–7322.
|
[11] |
QIN Xu, WANG Zhilin, BAI Yuanchao, et al. FFA-Net: Feature fusion attention network for single image dehazing[C]. 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11908–11915.
|
[12] |
DONG Hang, PAN Jinshan, XIANG Lei, et al. Multi-scale boosted dehazing network with dense feature fusion[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 2154–2164.
|
[13] |
SU Yanzhao, CUI Zhigao, HE Chuan, et al. Prior guided conditional generative adversarial network for single image dehazing[J]. Neurocomputing, 2021, 423: 620–638. doi: 10.1016/j.neucom.2020.10.061
|
[14] |
LI Lerenhan, DONG Yunlong, REN Wenqi, et al. Semi-supervised image dehazing[J]. IEEE Transactions on Image Processing, 2020, 29: 2766–2779. doi: 10.1109/TIP.2019.2952690
|
[15] |
SHAO Yuanjie, LI Lerenhan, REN Wenqi, et al. Domain adaptation for image dehazing[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 2805–2814.
|
[16] |
CHEN Zeyuan, WANG Yangchao, YANG Yang, et al. PSD: Principled synthetic-to-real dehazing guided by physical priors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 7176–7185.
|
[17] |
张世辉, 路佳琪, 宋丹丹, 等. 基于多尺度特征结合细节恢复的单幅图像去雾方法[J]. 电子与信息学报, 待发表.
ZHANG Shihui, LU Jiaqi, SONG Dandan, et al. Single image dehazing method based on multi-scale features combined with detail recovery[J]. Journal of Electronics & Information Technology. To be published,
|
[18] |
WANG Nian, CUI Zhigao, SU Yanzhao, et al. Multiscale supervision-guided context aggregation network for single image dehazing[J]. IEEE Signal Processing Letters, 2022, 29: 70–74. doi: 10.1109/LSP.2021.3125272
|
[19] |
MEI Kangfu, JIANG Aiwen, LI Juncheng, et al. Progressive feature fusion network for realistic image dehazing[C]. 14th Asian Conference on Computer Vision, Perth, Australia, 2019: 203–215. DOI: 10.1007/978-3-030-20887-5_13.
|
[20] |
ZHAO Hang, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47–57. doi: 10.1109/TCI.2016.2644865
|
[21] |
卢辉斌, 赵燕芳, 赵永杰, 等. 基于亮通道和暗通道结合的图像去雾[J]. 光学学报, 2018, 38(11): 1115004. doi: 10.3788/AOS201838.111500
LU Huibin, ZHAO Yanfang, ZHAO Yongjie, et al. Image defogging based on combination of image bright and dark channels[J]. Acta Optica Sinica, 2018, 38(11): 1115004. doi: 10.3788/AOS201838.111500
|
[22] |
BERMAN D, TREIBITZ T, and AVIDAN S. Non-local image dehazing[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1674–1682.
|
[23] |
GHIASI G, ZOPH B, CUBUK E D, et al. Multi-task self-training for learning general representations[C]. IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8836–8845.
|
[24] |
YUN S, HAN D, CHUN S, et al. CutMix: Regularization strategy to train strong classifiers with localizable features[C]. IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6022–6031.
|
[25] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/tpami.2016.2577031
|
[26] |
LI Boyi, REN Wenqi, FU Dengpan, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28(1): 492–505. doi: 10.1109/TIP.2018.2867951
|
[27] |
ZHANG Yanfu, DING Li, and SHARMA G. HazeRD: An outdoor scene dataset and benchmark for single image dehazing[C]. 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017: 3205–3209.
|
[28] |
ANCUTI C, ANCUTI C O, TIMOFTE R, et al. I-HAZE: A dehazing benchmark with real hazy and haze-free indoor images[C]. The 19th International Conference on Advanced Concepts for Intelligent Vision Systems, Poitiers, France, 2018: 620–631.
|
[29] |
ANCUTI C O, ANCUTI C, TIMOFTE R, et al. O-HAZE: A dehazing benchmark with real hazy and haze-free outdoor images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, USA, 2018: 867–875.
|
[30] |
ZHAO Shiyu, ZHANG Lin, HUANG Shuaiyi, et al. Dehazing evaluation: Real-world benchmark datasets, criteria, and baselines[J]. IEEE Transactions on Image Processing, 2020, 29: 6947–6962. doi: 10.1109/TIP.2020.2995264
|
[31] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL].https://doi.org/10.48550/arXiv.1804.02767, 2018.
|
[32] |
LI Chongyi, GUO Chunle, REN Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376–4389. doi: 10.1109/TIP.2019.2955241
|