Citation: | CHEN Honggang, LI Ziqiang, ZHANG Yongfei, WANG Zhengyong, QING Linbo, HE Xiaohai. Blind Image Super-resolution Reconstruction via Iterative and Alternative Optimization[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3343-3352. doi: 10.11999/JEIT220380 |
[1] |
蔡文郁, 张美燕, 吴岩, 等. 基于循环生成对抗网络的超分辨率重建算法研究[J]. 电子与信息学报, 2022, 44(1): 178–186. doi: 10.11999/JEIT201046
CAI Wenyu, ZHANG Meiyan, WU Yan, et al. Research on cyclic generation countermeasure network based super-resolution image reconstruction algorithm[J]. Journal of Electronics &Information Technology, 2022, 44(1): 178–186. doi: 10.11999/JEIT201046
|
[2] |
ZHANG Xiangjun and WU Xiaolin. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation[J]. IEEE Transactions on Image Processing, 2008, 17(6): 887–896. doi: 10.1109/TIP.2008.924279
|
[3] |
ZHANG Kaibing, GAO Xinbo, TAO Dacheng, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Transactions on Image Processing, 2012, 21(11): 4544–4556. doi: 10.1109/TIP.2012.2208977
|
[4] |
DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 184–199.
|
[5] |
CHEN Hanting, WANG Yunhe, GUO Tianyu, et al. Pre-trained image processing transformer[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 12299–12310.
|
[6] |
LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: Image restoration using swin transformer[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1833–1844.
|
[7] |
ZHANG Kai, LIANG Jingyun, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 4791–4800.
|
[8] |
WANG Xintao, XIE Liangbin, DONG Chao, et al. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 1905–1914.
|
[9] |
BELL-KLIGLER S, SHOCHER A, and IRANI M. Blind super-resolution kernel estimation using an internal-GAN[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 284–293.
|
[10] |
LIANG Jingyun, ZHANG Kai, GU Shuhang, et al. Flow-based kernel prior with application to blind super-resolution[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10601–10610.
|
[11] |
TAO Guangpin, JI Xiaozhong, WANG Wenzhuo, et al. Spectrum-to-kernel translation for accurate blind image super-resolution[C/OL]. Advances in Neural Information Processing Systems, 2021: 34.
|
[12] |
LIANG Jingyun, SUN Guolei, ZHANG Kai, et al. Mutual affine network for spatially variant kernel estimation in blind image super-resolution[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 4096–4105.
|
[13] |
KIM J, JUNG C, and KIM C. Dual back-projection-based internal learning for blind super-resolution[J]. IEEE Signal Processing Letters, 2020, 27: 1190–1194. doi: 10.1109/LSP.2020.3005043
|
[14] |
WANG Longguang, WANG Yingqian, DONG Xiaoyu, et al. Unsupervised degradation representation learning for blind super-resolution[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10581–10590.
|
[15] |
GU Jinjin, LU Hannan, ZUO Wangmeng, et al. Blind super-resolution with iterative kernel correction[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1604–1613.
|
[16] |
LUO Zhengxiong, HUANG Yan, LI Shang, et al. Unfolding the alternating optimization for blind super resolution[C/OL]. Advances in Neural Information Processing Systems, 2020: 5632–5643.
|
[17] |
LUO Zhengxiong, HUANG Yan, LI Shang, et al. End-to-end alternating optimization for blind super resolution[EB/OL]. https://arxiv.org/abs/2105.06878v1, 2021.
|
[18] |
WANG Zhihao, CHEN Jian, and HOI S C H. Deep learning for image super-resolution: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365–3387. doi: 10.1109/TPAMI.2020.2982166
|
[19] |
CHEN Honggang, HE Xiaohai, QING Linbo, et al. Real-world single image super-resolution: A brief review[J]. Information Fusion, 2022, 79: 124–145. doi: 10.1016/j.inffus.2021.09.005
|
[20] |
LIU Anran, LIU Yihao, GU Jinjin, et al. Blind image super-resolution: A survey and beyond[EB/OL]. https://arxiv.org/abs/2107.03055, 2021.
|
[21] |
HUI Zheng, LI Jie, WANG Xiumei, et al. Learning the non-differentiable optimization for blind super-resolution[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2093–2102.
|
[22] |
CHEN Haoyu, GU Jinjin, and ZHANG Zhi. Attention in attention network for image super-resolution[EB/OL]. https://arxiv.org/abs/2104.09497v3, 2021.
|
[23] |
GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1712–1722.
|
[24] |
AGUSTSSON E and TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: Dataset and study[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 126–135.
|
[25] |
TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al. NTIRE 2017 challenge on single image super-resolution: Methods and results[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 114–125.
|
[26] |
KINGMA D P and BA J. ADAM: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2014.
|
[27] |
BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]. British Machine Vision Conference, Surrey, United Kingdom, 2012.
|
[28] |
ZEYDE R, ELAD M, and PROTTER M. On single image scale-up using sparse-representations[C]. 7th International Conference on Curves and Surfaces, Avignon, France, 2010: 711–730.
|
[29] |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. Proceedings Eighth IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 416–423.
|
[30] |
HUANG J B, SINGH A, and AHUJA N. Single image super-resolution from transformed self-exemplars[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5197–5206.
|
[31] |
ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
|